River Trails Early Learning Center Remodeling

Mt Prospect, Illinois

Pre-Certified: PHIUS + 2018 PHIUS + SOURCE ZERO ICECF Net Zero Building Grant

Tom Boeman boeman design Boeman Design LLC

2607 West Leland Avenue | Chicago, IL 60625

Project Team

Owner

FGM ARCHITECTS

Project Architect

IMEG

MEP/FP Engineer

Photovoltaic Design

boeman design

Certified Passive House Consultant

PHIUS Rater/Certifier

What's Interesting about this Project

- It's a *Retrofit*
- It's Net Zero
- It's an *Educational Building*
- Its performance will be *Monitored* as a condition of Grant Funding.
- My First CPHC Project.

- First Remodeling of 1960s Modern 27,930 SF single story masonry Elementary School.
- Building includes School Offices, Classrooms, District Offices and Multipurpose room.
- Pursuing Net Zero Building Grant through the Illinois Clean Energy Community Foundation (ICECF)
- New Exterior Envelope including Walls, Roof, Doors and Windows.
- New HVAC System.
- New Interior and Exterior lighting systems.
- New roof-mounted PV array to offset source energy.

ICECF Net Zero Building Grant

Net Zero Energy Building Program

The Foundation's **Net Zero Energy Building Program** will award grants to new construction or retrofit projects that achieve site net zero energy performance or better, over the course of a year. Buildings must, at a minimum, offset all of their energy consumption with on-site generation from renewable resources. Grants will be paid incrementally, with full payment contingent on actual building performance.

The program goal is to encourage exemplary buildings that bring together beautiful design and careful construction to maximize energy efficiency, showcase renewable energy and, by educating the public and professionals, help pave the way for a larger shift in the building sector. The Foundation aims to fund projects that demonstrate that net zero energy buildings are realistic and achievable. These flagship projects will add to the knowledge base on net zero building design and operation.

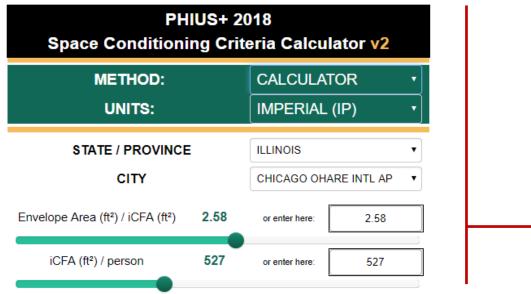
Exterior construction of Bott Park Indoor Recreation Center in Plainfield, IL. Photo: Wight & Company.

Grant requires dramatic reductions in energy consumption *prior* to offsetting with renewables. Reductions substantiated by: <u>PHIUS + 2018</u> or Petal (Energy) Living Building Certification

Grant requires all Renewable Energy to be generated on site.

Grant requires Monitoring of energy use and renewable production for 12 consecutive months to verify modeling

ICECF expects an EUI in the "high teens" to "low twenties"


PHIUS+ Certification & ICECF Grant Process

	Design	Construction	Post Construction
PHIUS	PHIUS Requirements		-
	Pre - Certification	Final - Certification	
	CPHC [®] Energy Model and Documentation	PHIUS: PHIUS: PHIUS: PHIUS: <td< th=""><th></th></td<>	
Illinois Clean Energy	ICECF Requirements		
	Pre Proposal	Full Proposal	Monitoring
			12 Consecutive Months Monitoring
	First Grant Payout (30%)	Second Grant Payout (30%)	Final Grant Payout (40%)

P

PHIUS + Criteria Calculator: Inputs

PHIUS+ 2018 Final Calculator v2

*Calculator method is used for official certification targets.

Space Conditioning Criteria								
Annual Heating Demand	8.3	kBTU/ft²yr						
Annual Cooling Demand	7.8	kBTU/ft²yr						
Peak Heating Load	6.3	BTU/ft ² hr						
Peak Cooling Load	4.0	BTU/ft ² hr						

Typed entry will override sliding

scale

The results of the CALCULATOR method take precedence over the ESTIMATOR method.

Inputs Local Climate Data Chicago Illinois Envelope to floor area: 2.58 iCFA 27,930 Sf Max Occupancy 297 (used for peak load) Average Occupancy 53

(used for annual demand)

PHIUS + Criteria Calculator: Targets

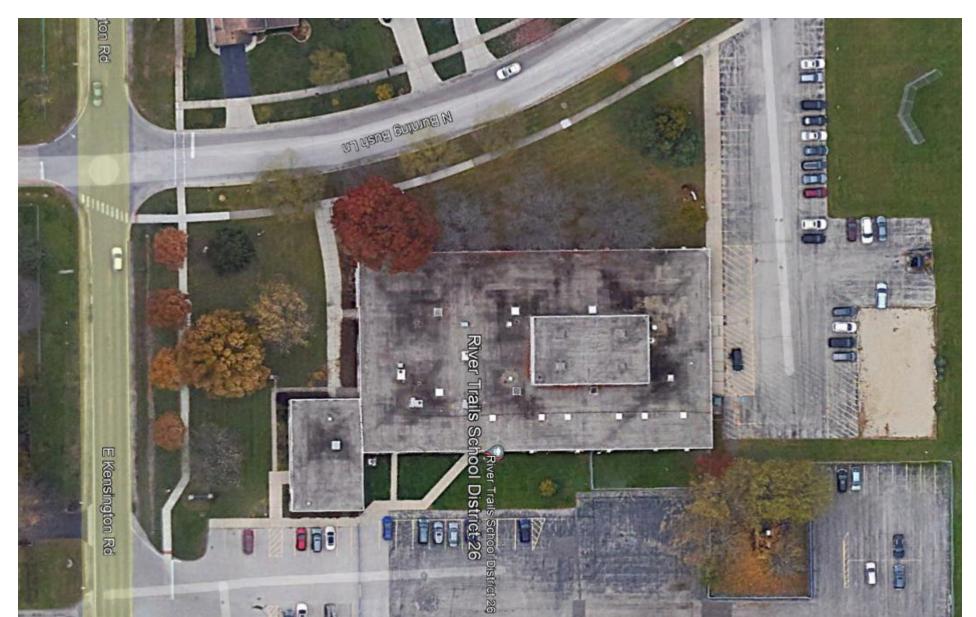
PHIUS+ 2018 Final Calculator v2

Typed entry will override sliding

scale.

The results of the CALCULATOR method take precedence over the ESTIMATOR method.

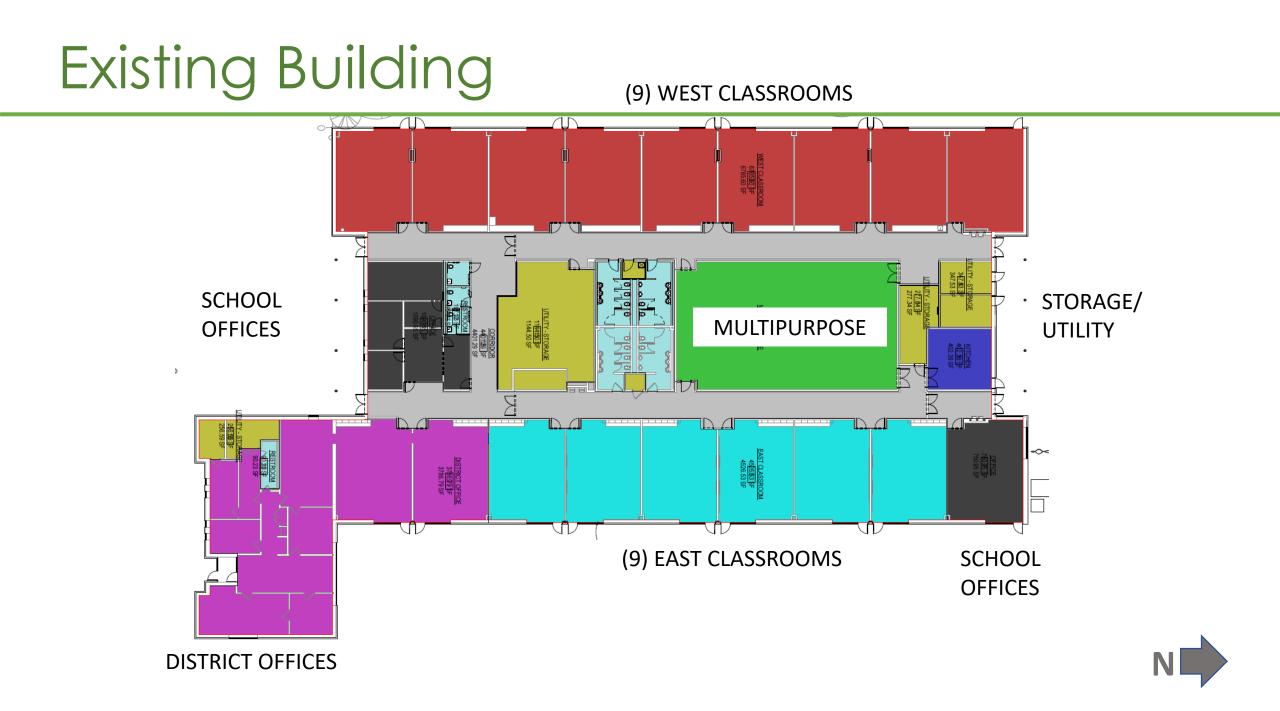
Targets:


Project Specific Targets for:

- Annual Heating Demand: 8.3 kBTU/ft²yr
- Annual Cooling Demand: 7.8 kBTU/ft²yr
- Peak Heating Load: 6.3 BTU/ft²hr
- Peak Cooling Load: 4.0 BTU/ft²hr

Universal Targets for:

- Source Energy: 34.8 kBTU/ ft2 yr (110 kWh/ m2 yr)
- Air Tightness: q50 <= 0.060 CFM50/ft2 (Envelope)</p>



Physical Opportunities

- All new exterior envelope including wall finishes, glazing system and roofing.
- All new mechanical systems.
- All new Lighting Systems
- No Historic features or finishes were being preserved.

- "Pancake" building with relatively high surface area to iCFA. Less than optimal form.
- No opportunities to adjust window orientation or massing.
- Existing un-insulated slab on grade.

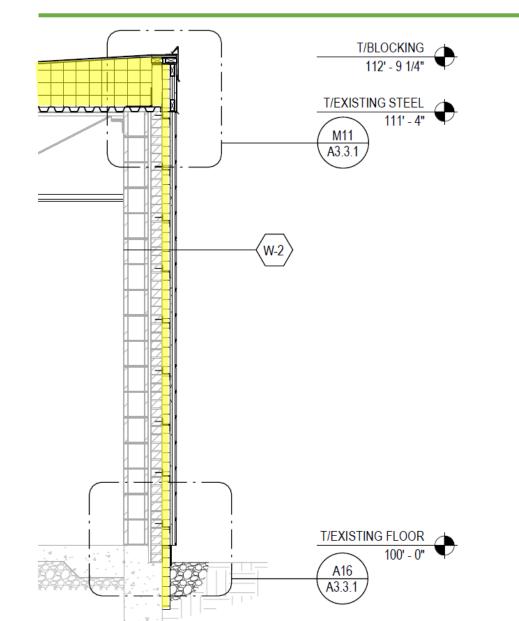
New to Phius + Certification Guide V.3.

1.5.6 Retrofit Projects

The criteria for retrofit projects are the same as for new construction, except that a case-by-case energy allowance may be made for a foundation perimeter thermal bridge or other such hard-to-fix structural thermal bridges - provided that the design is also "damage-free," that is, low risk from a moisture point of view.

The allowance noted above may also apply to uninsulated slab-on-grade conditions. To determine the allowance in WUFI Passive, the prescriptive path R-value under the slab should be modeled. The difference in modeled performance results is equivalent to the allowance that may be applied.

Process Opportunities


- The Owner had a strong commitment to achieving Net Zero
- The Architect, FGM, had a strong technical grasp of the issues. Adopted a straightforward "Textbook" approach
- The MEP Engineer, IMEG, had Net Zero building Experience
- The Builder Nicolas and Associates had 2 team members take the PHIUS Builder training in preparation for the project.

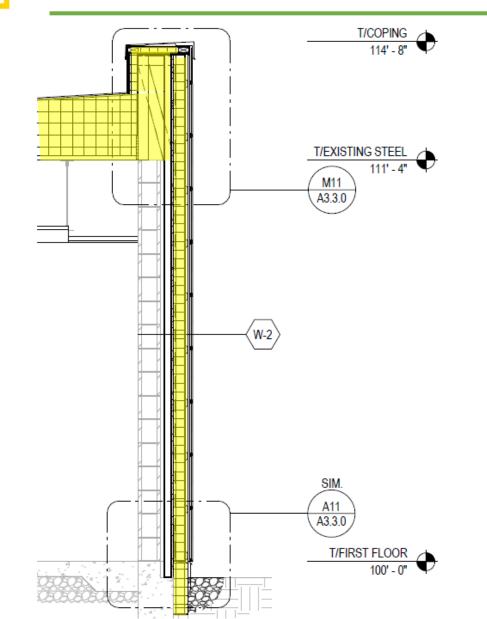
Process Challenges

- The CPHC was brought in at 100% Design Development
- The building was already designed as "Net Zero"....

..... But with IECC levels of insulation

Thermal Envelope - Wall Section: 100% DD

R-30 Roof Tapered Polyisocyanurate


R-15 Walls (Total R-18)

2 ¹/₂" Polyisocyanurate

R-15 Slab Edge

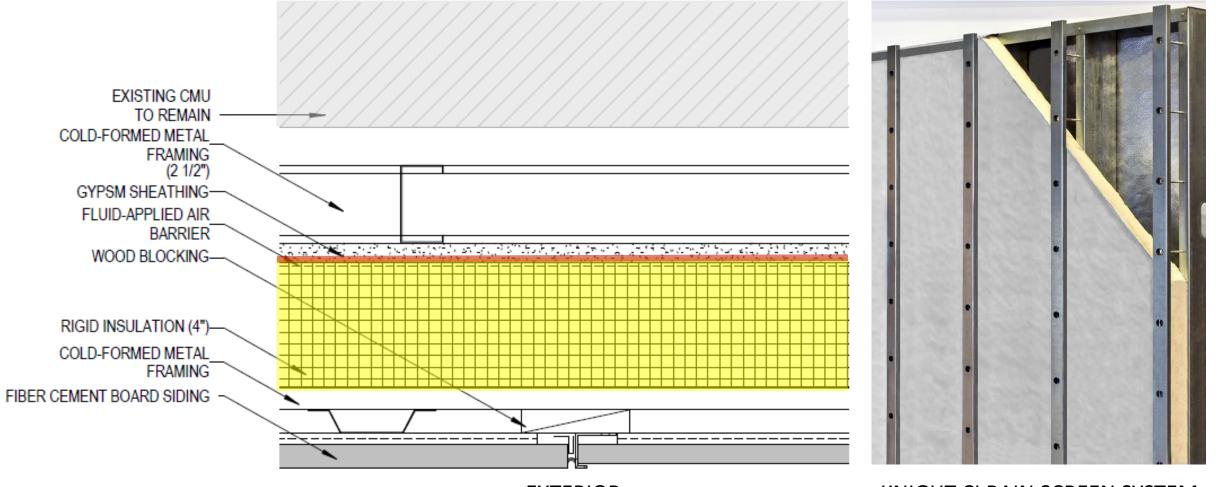
2 ½" Polyisocyanurate 2'-0" Deep

Thermal Envelope - Wall Section: Final CDs

R-80 Roof (Effective)

Tapered" Polyisocyanurate (10" Min – 20" Max)

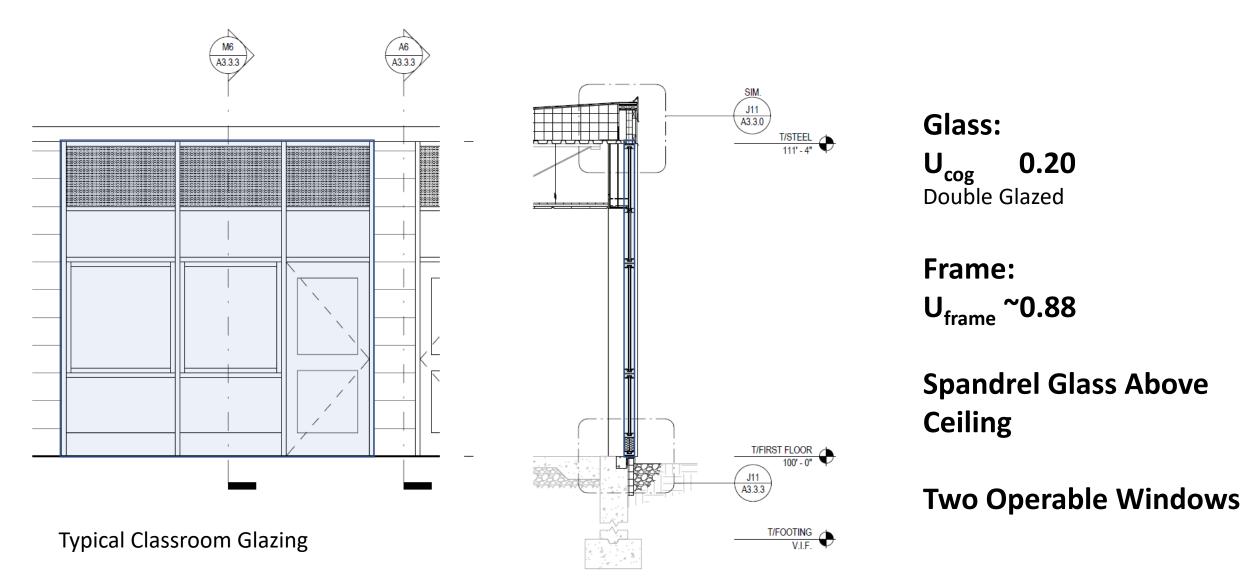
R-24 Walls (Total R-27)

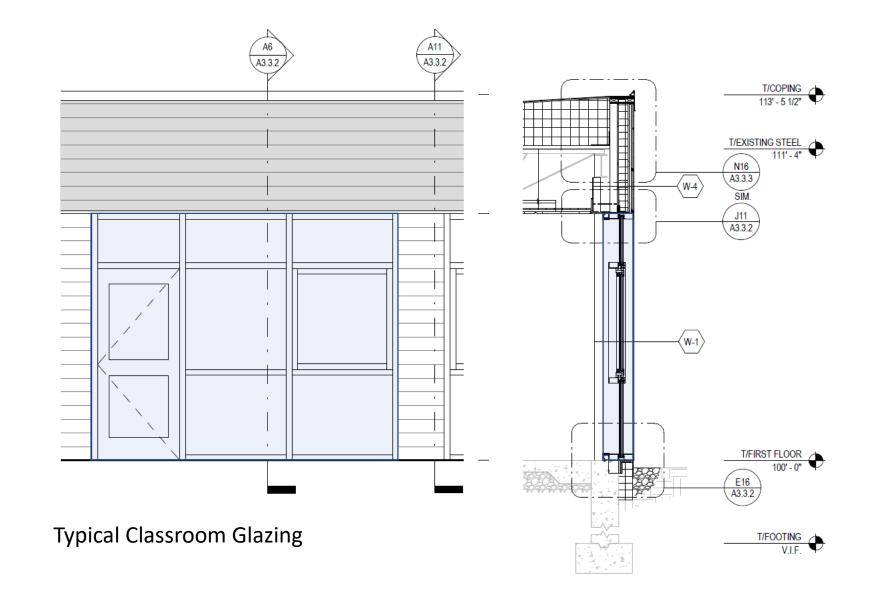

4"Polyisocyanurate (Maximum accepted by Cladding Manufacturer)

R-30 Slab Edge/Foundation Wall

6"Polyisocyanurate 2'-0" deep

Thermal Envelope – Wall Detail


INTERIOR


EXTERIOR

KNIGHT CI RAIN SCREEN SYSTEM

Thermal Envelope - Windows: 100% DD

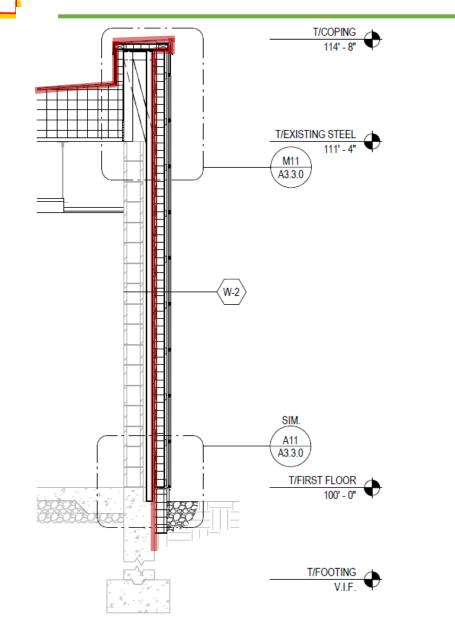
Thermal Envelope - Windows: Final CDs

Glass: U_{cog} 0.111 Triple Glazed Double Coated

Frame: U_{frame} ~0.88

Eliminate Spandrel Glass above Ceiling

Reduce to One Operable Window


Thermal Envelope - Windows

Kawneer 1600UT Triple glazed and Fiberglass Pressure Plates

Product name: 1600UT Sy	stem™ Curtain	Wall- Fiberglas	s PP		Cente	r-of-glass prop	oerties
ASHRAE/IECC/ DOE North	North,		PHIUS			/ Argon / Clea 6mm/6mm) 4	
American South- Climate Zone facing	East, West -facing		Passive House Institut	e US			
		Whole-wi	ndow installed	U-value		Ucog-Value	
Climate specific recommend	ations:	W/m2K	BTU/hr.ft2.F		SHGC	W/m2K	BTU/hr.ft2.
8		1.10	0.19		0.329	0.684	0.12
7		1.07	0.19		0.329	0.656	0.11
6		1.05	0.18		0.329	0.635	0.11
5		1.05	0.18		0.329	0.632	0.11
4		1.04	0.18		0.329	0.628	0.11
Marine North		1.04	0.18		0.329	0.627	0.11
Marine South		1.04	0.18		0.329	0.627	0.11
3		1.04	0.18		0.329	0.627	0.11
2 West		1.05	0.18		0.329	0.632	0.11
2 East		1.05	0.18		0.329	0.632	0.13
		•					
1600UT System™ Curtain Wa	11-	FRA	ME			bacer	
Kommerling TPS Spacer	Frame	e height	U-fra	me	Psi-spacer Ψ W/mK BTU/hr.ft.F		
Horizontal two lite left	mm	in	W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F	
left he	ad 35		4.81	0.85	-0.001	-0.001	
left:			4.82	0.85	-0.001	-0.001	
left jar			5.17	0.91	-0.001	-0.001	
right N	IR 35	5 1.38	5.17	0.91	-0.001	-0.001	
1600UT System™ Curtain Wall-	Fil	FRA	ME		Psi-s	oacer	Psi-opaqu
Kommerling TPS Spacer	Frame	e height	U-fra	me	ų	ĥ	
Horizontal two lite right	mm	in	W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F	W/mK
right he	ad 35	5 1.38	4.81	0.85	-0.001	-0.001	0.180
right	sill 35	5 1.38	4.82	0.85	-0.001	-0.001	BTU/hr.ft.F
right jar			5.17	0.91	-0.001	-0.001	0.104
left M	IR 35	5 1.38	5.17	0.91	-0.001	-0.001	Grade C
For horizontal slider the right							

PHIUS Verified Window Data.

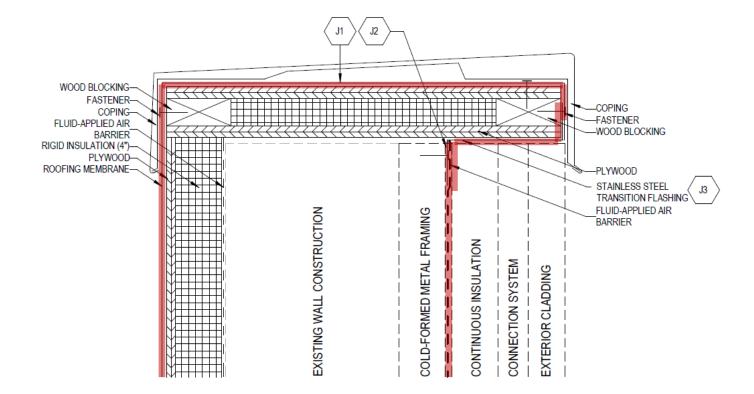
Continuous Air Barrier

Air Barrier Components:

Roof Membrane

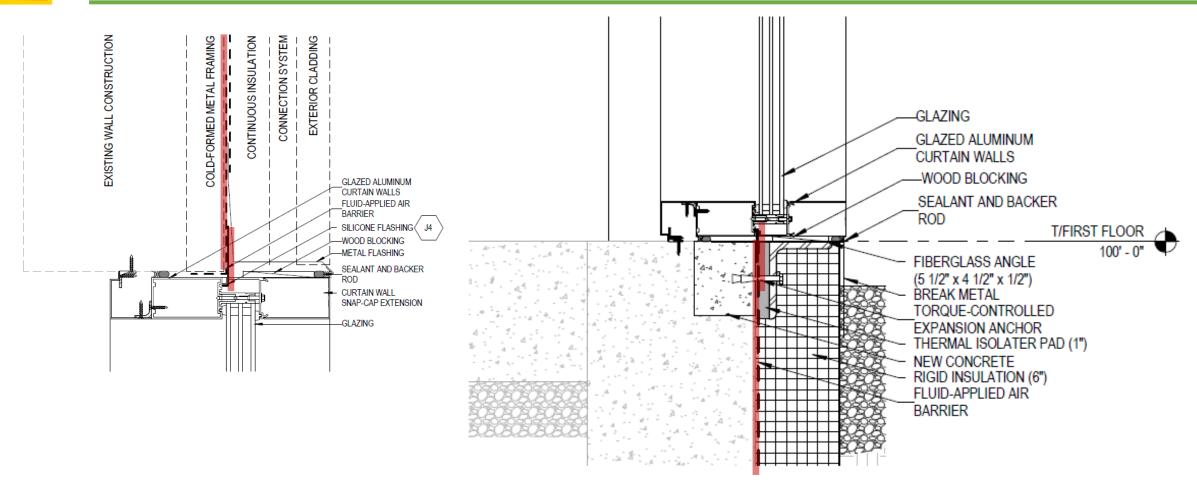
Fluid Applied Air Barrier

Wall Sheathing and Foundation Face Below.


Stainless Steel Transition Flashing.

Between Fluid Applied Air Barrier and Roof Membrane.

Silicone Window Flashing


Clamped into Glazing Channel

Continuous Air Barrier

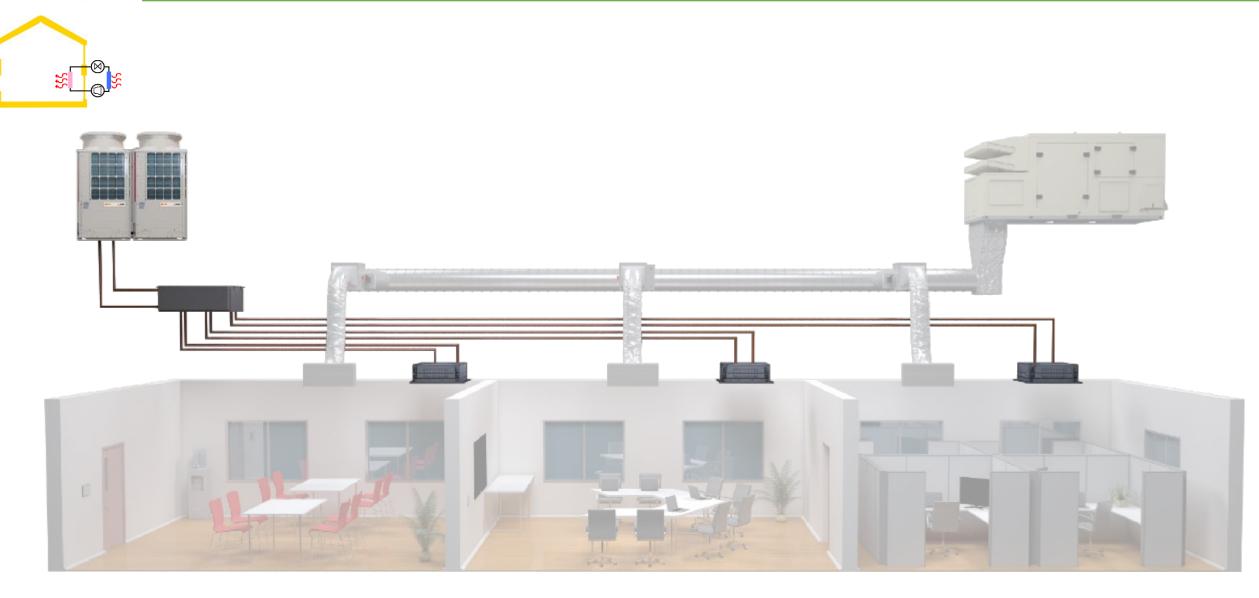
TYPICAL PARAPET

Continuous Air Barrier

TYPICAL WINDOW SILL

TYPICAL WINDOW JAMB

Mechanical System Selection

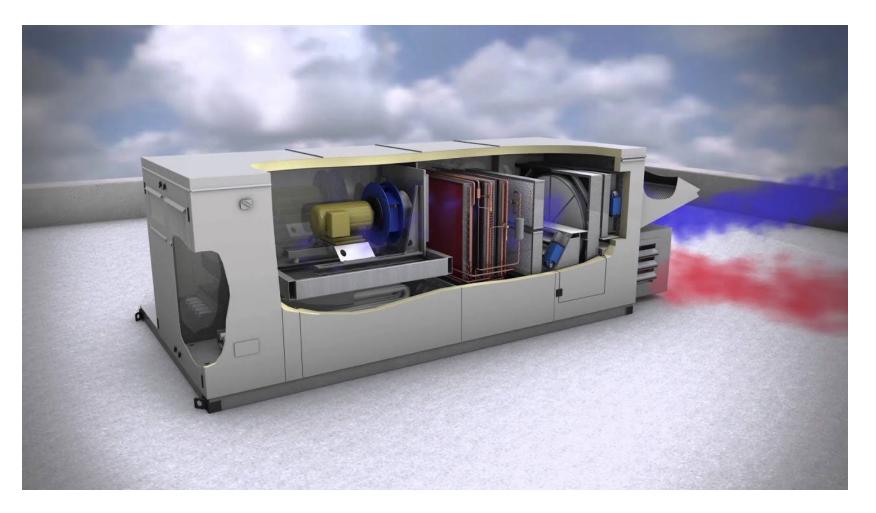

System/Plant	EUI		Energy Cost				
System/Plant	(kBtu/sqft/yr)	% Savings		(\$/yr)	% Savings		
Baseline: 90.1-2013	75	_	\$	30,128	-		
Single Pipe Hybrid Geothermal	20	74%	\$	21,854	27%		
Single Pipe 100% Geothermal	20	74%	\$	21,682	28%		
VRF Hybrid Geothermal	17	78%	\$	18,264	39%		
VRF 100% Geothermal	16	78%	\$	18,026	40%		
VRF Air Cooled	23	69%	\$	25,327	16%		

Energy Source	Utility	Costs
Electric	\$0.086 per kWh	\$0.025 per kBtu
Natural Gas	\$0.386 per therm	\$0.004 per kBtu

Envelope Assumptions								
Exterior Wall:	R-18 (U-0.055)							
Roof:	U-0.032							
Windows:	U-0.42 and SHGC: 0.40							
Window to Wall Ratio:	35%							

25

DOAS COUPLED WITH VRF SYSTEM


DOAS Components:

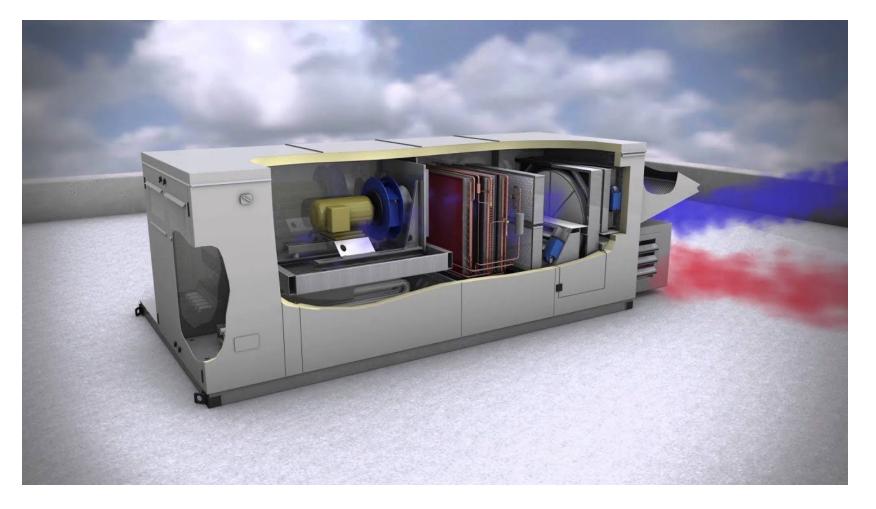
ECM Motor Fan Electronically Commutated Motor

Energy Recovery Wheel All building exhaust is recovered

Digital Scroll Compressors Match Compressor output to load

Heat Pump Heating Coefficient of Performance of 2.3 Operates in heating down to 0°F

DOAS Operating Modes:


Economizer Mode

Manages Moisture content of air Optimizes Dew point of outside air for Supply air

Free Cooling Mode

Provides additional cooling through ventilation when Outside air conditions are cooler than inside.

Dehumidification

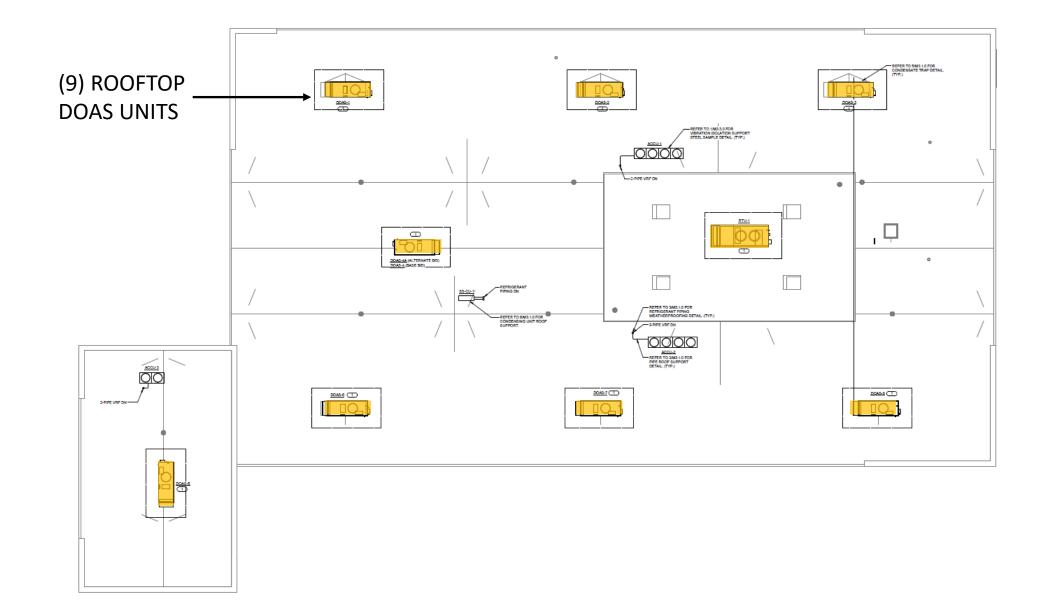
AIR-CONDITIONING, HEATING, & REFRIGERATION INSTITUTE

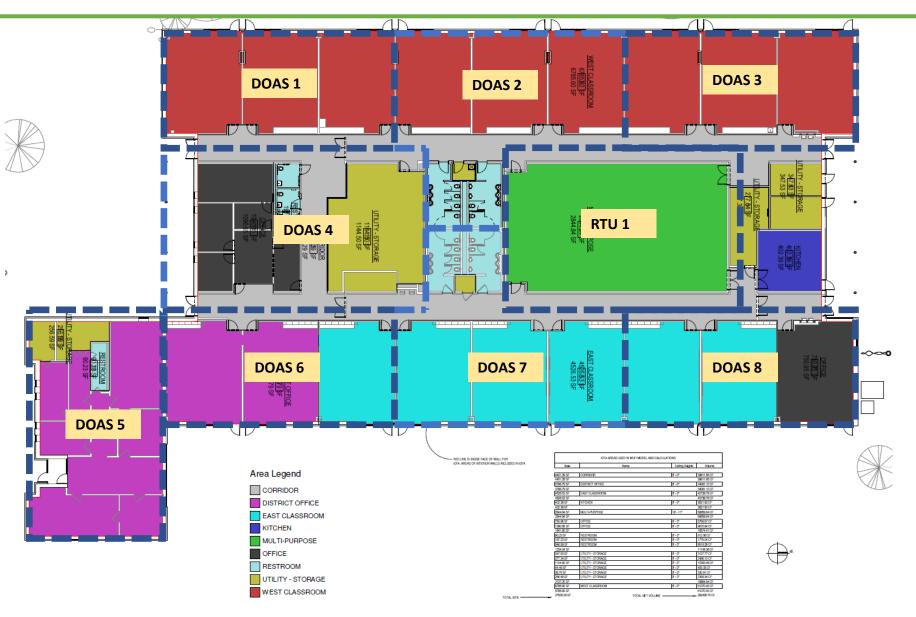
we make life better™

CERTIFICATE NO .:

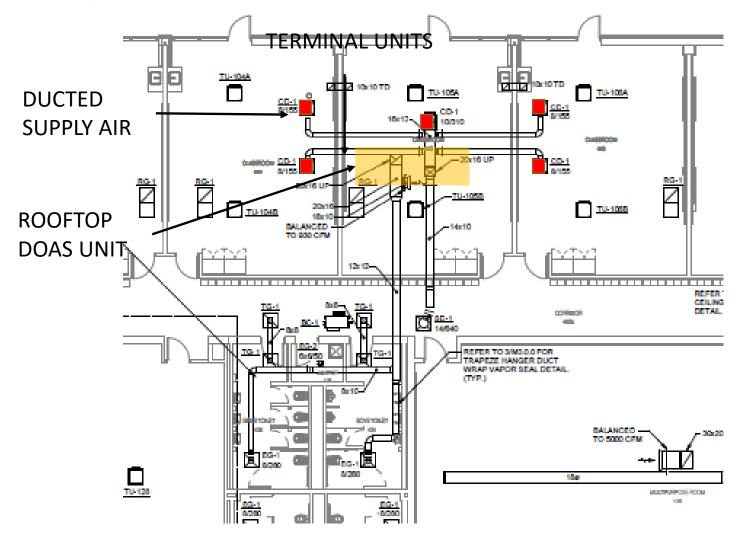
132187591191029440

d AHRI Reference Number : and Name : Airschange oduct Type : Wheel dection Software Name : lection Software Name : lection Software Version : teaction : t	and Name : Airxchange oduct Type : Wheel odel Number : ERC-3014C election Software Name :				
oduct Type : Wheel odel Number : ERC-3014C bection Software Version : teads follows for software Version : teads follows in accordance with the latest edition of ANSI/AHRI 1000 (I-P) Performance Rating of Air-to-Air Exchangers for Energy Recovery inflation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: iminal Air Flow (cofm) : 1400 essure Drog (at nominal airflow, in. H2O) : 1.00 Leakage Ratings PersureDiff E411 : 0 24 1.04 Test 1 : 0.5 0.9 1.10 100% Air Flow Heating : 78 75 & Air Flow Heating : 78 75 & Air Flow Heating : 76 75 & Air Flow Heating : 76 75 & Air Flow Heating : 78 75 & Air Flow Heating : 76 75 & Air Flow Heating : 76 76 77 75 & Air Flow Heating : 76 75 & Air Flow Heating : 76 76 77 76 77 76 76 76 77 76 76 76 77<	oduct Type : Wheel odel Number : ERC-3014C election Software Name :				
Sold Number : ERC-3014C lection Software Name : ided in Software Name : ided in Software Version : task as follows in accordance with the latest edition of ANSI/AHRI 1060 (I-P) Performance Rating of Air-to-Air Exchangers for Energy Recovery intilation Equipment and subject to rating accuracy by AHRI-sponsored, Independent, third party testing: bining Air Flow (softm) : 1400 essure Drop (at nominal airflow, in. H2O) : 1.00 Leakage Ratings PressureDiff Ext 1: 0 24 1.04 Test 1: 0.9 1 0.9 100% Air Flow Heating : 78 75 78 100% Air Flow Cooling : 80 75 75 100% Air Flow Heating : 76 75 77 76 77 77 78 100% Air Flow Heating : 76 76 77 77 78 100% Air Flow Heating : 76 76 77 77 77 78 77 79 70 74 77 75	del Number : ERC-3014C lection Software Name :				
Nection Software Name : Nection Software Version : teted as follows in accordance with the latest edition of ANSI/AHRI 1000 (I-P) Performance Rating of Air-to-Air Exchangers for Energy Recovery Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: sominal Air Flow (softm) : 1400 Leakage Ratings PressureDiff EATR(%) OACF PurgeAngle Test 1: 0 24 1.04 NA Test 2: 0.5 0.8 1.08 2 Test 3: 1 0.9 1.10 Sensible(%) Latent(%) Total(%) 100% Air Flow Heating : 78 75 5 78 100% Air Flow Cooling : 78 Net Sensible(%) Net Latent(%) Net Total(%) 100% Air Flow Heating : 76 W 70 W. Ahridi 74 Ctory.org 75 % Air Flow Heating : 70 74 76 % Air Flow Heating : 78 75 77 74 Ctory.org	lection Software Name :				
Nection Software Version : ted as follows in accordance with the latest edition of ANSI/AHRI 1080 (I-P) Performance Rating of Air-to-Air Exchangers for Energy Recovery initial and subject to rating accuracy by AHRI-sponsored, independent, third party testing: mininal Air Flow (softm) : 1400 sessure Drog (at noninal airflow, in. H2O) : 1.00 Leakage Ratings PressureDiff EATR(%) OACF PurgeAngle Test 1 : 0 2.4 1.04 N/A Test 2 : 0.5 0.8 1.08 2 Test 3 : 1 0.9 1.10 Sensible(%) Latent(%) Total(%) 100% Air Flow Heating : 78 75 % Air Flow Cooling : 78 100% Air Flow Heating : 76 Net Sensible(%) Net Latent(%) Net Total(%) 100% Air Flow Heating : 76 Net Sensible(%) Net Latent(%) Net Total(%) 100% Air Flow Heating : 76 75 % Air Flow Heating : 76 75 % Air Flow Heating : 76 76 W 75 W : Air Flow Heating : 76 76 W 75 W : 77 W : Air Midi 74 Ctory.org					
ted as follows in accordance with the latest edition of ANSI/AHRI 1080 (I-P) Performance Rating of Air-to-Air Exchangers for Energy Recovery initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: mininal Air Flow (scfm) : 1400 Essure Drop (at nominal airflow, in. H2O) : 1.00 Leakage Ratings PressureDiff EATR(%) OACF PurgeAngle Test 1: 0 2.4 1.04 N/A Test 2: 0.5 0.8 1.08 2 Test 3: 1 0.9 1.10 1 Sensible(%) Latent(%) Total(%) 100% Air Flow Heating : 76 70 74 75 % Air Flow Cooling : 80 75 77 100% Air Flow Cooling : 76 70 74 100% Air Flow Heating : 76 75 77 100% Air Flow Heating : 78 76 75 77 100% Air Flow Heating : 78 76 75 77 100% Air Flow Heating : 78 76 75 77 100% Air Flow Heating : 78 76 75 77 100% Air Flow Heating : 78 76 75 77 100% Air Flow Heating : 78 76 75 77 100% Air Flow Heating : 78 76 75 77 100% Air Flow Heating : 78 75 100% Air Flow He	lection Software Version :				
Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, third party testing: Initiation Equipment and subject to rating accuracy by AHRI-sponsored, independent, the sponsored accuracy by AHRI-sponsored, independent accuracy by					
Jaminal Air Flow (schm) : 1400 essure Drop (at nominal airflow, in. H2O) : 1.00 Leakage Ratings PressureDiff EATR(%) OACF PurgeAngle Test 1: 0 2.4 1.04 N/A Test 2: 0.5 0.8 1.08 2 Test 3: 1 0.9 1.10 1 100% Air Flow Heating : 80 75 78 70 100% Air Flow Cooling : 78 75 78 70 Net Sensible(%) Latent(%) Net Total(%) 1 Net Sensible(%) Net Latent(%) Net Total(%) 1 Not% Air Flow Cooling : 76 70 74 75 78 70 74 75 100% Air Flow Heating : 76 70 74 75 Net Sensible(%) Net Latent(%) Net Total(%) Net Total(%) Not% Air Flow Heating : 76 70 74 76 Not% Air Flow Heating : 76 70 72 72	ted as follows in accordance wit	h the latest edition of AN	SI/AHRI 1060 (I-P) Perfor	mance Rating of Air-to-Air Exchar	ngers for Energy Recovery
Test 1: 0 2.4 1.04 NA Test 2: 0.5 0.8 1.08 2 Test 3: 1 0.9 1.10 1 Sensible(%) Latent(%) Total(%) 1 1 100% Air Flow Heating: 76 75 78 70 74 75% Air Flow Cooling: 80 75 78 70 72 72 100% Air Flow Cooling: 80 75 77 72 75 76 75 77 76 77 72 75 74 75 76 76 77 72 75 76 76 77 77 76 76 77 77 76 76 77 77 76 76 77 77 76 76 77 77 76 76 77 77 76 77 76 77 77 76 76 77 77 76 77 77 77 76	eminal Air Flow (scfm) : 1400 essure Drop (at nominal airflow, i	in. H2O) : 1.00			
Test 2: 0.5 0.8 1.08 2 Test 3: 1 0.9 1.10 1 Sensible(%) Latent(%) Total(%) 1 100% Air Flow Heating: 76 70 74 75 % Air Flow Heating: 76 75 78 100% Air Flow Cooling: 80 75 77 72 Net Sensible(%) Net Latent(%) Net Total(%) Net Total(%) 100% Air Flow Heating: 76 75 78 70% Air Flow Heating: 76 70 74 75 78 75 78 75 76 70 74 75 76 70 70 74 76 77 100% Air Flow Heating: 76 70 74 74 100% Air Flow Heating: 76 70 74 74 75 78 70 74 74 74	Leakage Ratings F	PressureDiff	EATR(%)	OACF	PurgeAngle
Test3: 1 0.0 1.10 1 Sensible(%) Latent(%) Total(%) 100% Air Flow Heating: 78 70 74 75 % Air Flow Heating: 80 75 78 100% Air Flow Cooling: 70 74 75 75% Air Flow Cooling: 78 75 78 76 Air Flow Heating: 70 72 72 Net Sensible(%) Net Latent(%) Net Total(%) 100% Air Flow Heating: 76 70 7.4 75 % Air Flow Heating: 78 75 78 100% Air Flow Heating: 76 70 7.4 75 % Air Flow Heating: 78 70 74 75 % Air Flow Heating: 70 74 76 75 77 72 72 72	Test 1 :	0	2.4	1.04	N/A
Sensible(%) Latent(%) Total(%) 100% Air Flow Heating: 76 70 74 75% Air Flow Cooling: 80 75 78 70% Air Flow Cooling: 80 75 77 70% Air Flow Cooling: 80 75 77 70% Air Flow Heating: 76 70 72 100% Air Flow Heating: 76 70 72 100% Air Flow Heating: 76 70 74 75 78 75 78 76 75 78 72 100% Air Flow Heating: 76 70 Net Total(%) Net Total 75 72 74 75 78 70 74 74 75 78 70 74 74 75 78 70 74 74 76 75 77 74 75 76 77 70 74 74		0.5		1.00	2
100% Air Flow Heating : 78 70 74 75 % Air Flow Cooling : 80 75 72 76 % Air Flow Cooling : 80 75 77 77 Heat Cooling : 80 Net Latent(%) Net Total(%) 100% Air Flow Heating : 78 75 W. ahridi 74 ctory.org 75 % Air Flow Heating : 80 75 72 100% Air Flow Heating : 78 72 69 72	Test 3 :	1	0.9	1.10	1
75 % Air Flow Heating : 76 % Air Flow Heating : 78 % Air Flow Heating : 74 % 75 W . a hridi 74 ctory.org	s	Sensible(%)	Latent(%)	Total(%)	
100% Air Flow Cooling: 76 70 72 72 72 75% Air Flow Cooling: 80 75 77 77 72 72 100% Air Flow Heating: 76 70 Net Total(%) Net Total(%) 74 74 100% Air Flow Heating: 76 70 N. ahridi 74 72 75 % Air Flow Heating: 70 75 74 72 72					
Net Sensible(%) Net Latent(%) Net Total(%) 100% Air Flow Heating : 76 77 100% Air Flow Heating : 78 70 75 % Air Flow Heating : 80 75 76 % Air Flow Heating : 80 75					
100% Air Flow Heating : 76 W 70 W. a hridi 74 ctory.org 75% Air Flow Heating : 80 75 72 72					
100% Air Flow Heating : 76 W 70 W. a hridi 74 ctory.org 75% Air Flow Heating : 80 75 72 72					
75 % Air Flow Heating : 80 75 78 74 69 72	N	let Sensible(%)	Net Latent(%)	Net Total(%)	
74 89 72					
199%%A/FESWC58888g9: 80 74 77	75 % Air Flow Heating :				
	100% Air Flow Cooling :				
		AHRI Certification Program P	articipant is currently produce	an AND colling or offering for cale: OP	new models that are being
tue" Model Status are those that an AHBI Certification Process Participant is currently producion AND selling or offering for sale: OB new models that are being					
tive" Model Status are those that an AHRI Certification Program Participant is currently producing AND selling or offering for sale: OR new models that are being leted but are not yet being produced. "Production Stopped" Model Status are those that an AHRI Certification Program Participant is no longer producing BUT is still og or offering for sale. Og that are accounting and ed by WAS indicate an involuminary nerate. The new published rating is shown along with the previous (i.e. WAS) rating.	eted but are not vet being produced.	"Production Stopped" Model	Status are those that an AHR	I Certification Program Participant is no	o longer producing BUT is still


The information for the model cited on this certificate can be verified at www.ahridirectory.org, click on "Verity Certificate" link and enter the AHRI Certified Reference Number and the date on which the certificate was issued,


which is listed above, and the Certificate No., which is listed at bottom right.

©2019Air-Conditioning, Heating, and Refrigeration Institute


CERTIFICATE VERIFICATION

WUFI Inputs													
ensible Recovery Efficiency			Total [esign A	irflow				-				
0.81				10,435					+				
umidity Recovery Efficiency			1										
0.75									+				
									+				
							Weighted	Weighted	T	Net Se	ensible		
Model	Units	CFM	Net Sen	sible (%)	Net Lat	tent (%)	Sensible	Humidity		SI	pe	Net Late	ent Slo
			Heating	Cooling	Heating	Cooling	Recovery	Recovery		Heating	Cooling	Heating	Cool
	100% AHRI Rated Airflow	1,400		74	70	69			+	0.0114		0.0143	
DOAS-1	75% AHRI Rated Airflow	1.050		80	75	74			1				
	Design airflow	980		81.2	76.0	75.0	0.0759	0.0714					<u> </u>
									T				_
	100% AHRI Rated Airflow	1,400	76	74	70	69			T	0.0114	0.0171	0.0143	0.0
DOAS-2	75% AHRI Rated Airflow	1,050	80	80	75	74			1				
	Design airflow	1,570		71.1	67.6	66.6	0.1114	0.1017					<u> </u>
									T				-
	100% AHRI Rated Airflow	1,400	76	74	70	69			T	0.0114	0.0171	0.0143	0.0
DOAS-3	75% AHRI Rated Airflow	1,050	80	80	75	74		1	1				
	Design airflow	930	81.4	82.1	76.7	75.7	0.0725	0.0684				<u> </u>	<u> </u>
									+				
	100% AHRI Rated Airflow	1,400	76	74	70	69			Т	0.0114	0.0171	0.0143	0.0
DOAS-4	75% AHRI Rated Airflow	1,050	80	80	75	74			1				-
	Design airflow	990	80.7	81.0	75.9	74.9	0.0765	0.0720	1				\square
									T				-
	100% AHRI Rated Airflow	1,400	76	74	70	69			т	0.0114	0.0171	0.0143	0.0
DOAS-5	75% AHRI Rated Airflow	1,050		80	75	74			1				
	Design airflow	910		82.4	77.0	76.0	0.0712	0.0671					<u> </u>
									-				-
	100% AHRI Rated Airflow	1,400	76	74	70	69			Т	0.0114	0.0171	0.0143	0.0
DOAS-6	75% AHRI Rated Airflow	1,050	80	80	75	74			1				<u> </u>
	Design airflow	700	84.0	86.0	80.0	79.0	0.0563	0.0537	1				
									-		-		
	100% AHRI Rated Airflow	1,400	76	74	70	69			Т	0.0114	0.0171	0.0143	0.0
DOAS-7	75% AHRI Rated Airflow	1,050	80	80	75	74			1				
	Design airflow	1,565	74.1	71.2	67.6	66.6	0.1112	0.1014	1				<u> </u>
									-				
	100% AHRI Rated Airflow	1,400	76	74	70	69			Т	0.0114	0.0171	0.0143	0.0
DOAS-8	75% AHRI Rated Airflow	1,050	80	80	75	74			1				
	Design airflow	950	81.1	81.7	76.4	75.4	0.0739	0.0696	1				
	-												
	100% AHRI Rated Airflow	3,200	65	64	61	60			Т	0.0200	0.0143	0.0143	0.0
RTU-1	75% AHRI Rated Airflow	2,400	72	69	66	65			1				
	Design airflow	1,840	92.2	83.4	80.4	79.4	0.1626	0.1418	1				
									T				
	100% AHRI Rated Airflow								Т	0.0000	0.0000	0.0000	0.0
	75% AHRI Rated Airflow	0											
	Design airflow		0.0	0.0	0.0	0.0	0.0000	0.0000					
	100% AHRI Rated Airflow									0.0000	0.0000	0.0000	0.0
	75% AHRI Rated Airflow	0											
	Design airflow		0.0	0.0	0.0	0.0	0.0000	0.0000					
	100% AHRI Rated Airflow									0.0000	0.0000	0.0000	0.0
	75% AHRI Rated Airflow	0											
	Design airflow		0.0	0.0	0.0	0.0	0.0000	0.0000					
	100% AHRI Rated Airflow									0.0000	0.0000	0.0000	0.0
	75% AHRI Rated Airflow	0											
	Design airflow		0.0	0.0	0.0	0.0	0.0000	0.0000					

Ventilation Air Distribution:

Ducted Supply to Classrooms, Corridors and other occupied spaces.

Plenum Return from Occupied Spaces

Ducted Return from Restrooms

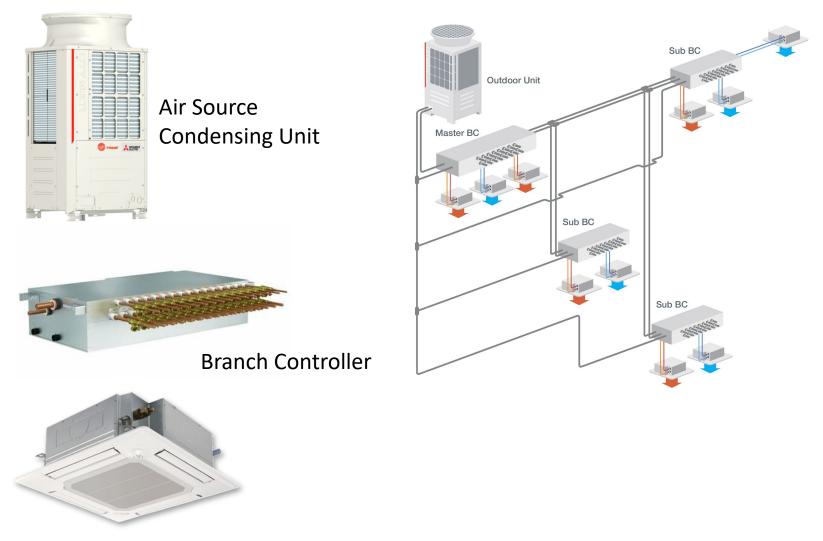
Make sure there is no direct exhaust ventilation. Except as required for kitchens or combustion appliances.

Align Ventilation Zones with Operational Zones as much as possible

Use Heat pump for DOAS Ventilation air Conditioning

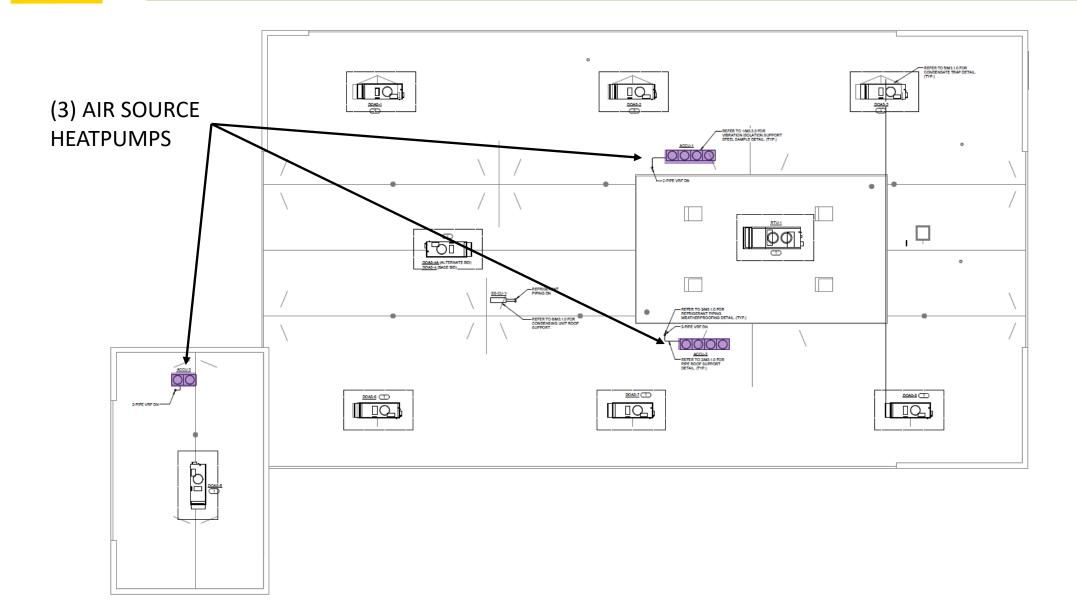
Variable Refrigerant Flow System (VRF)

VRF System Components:

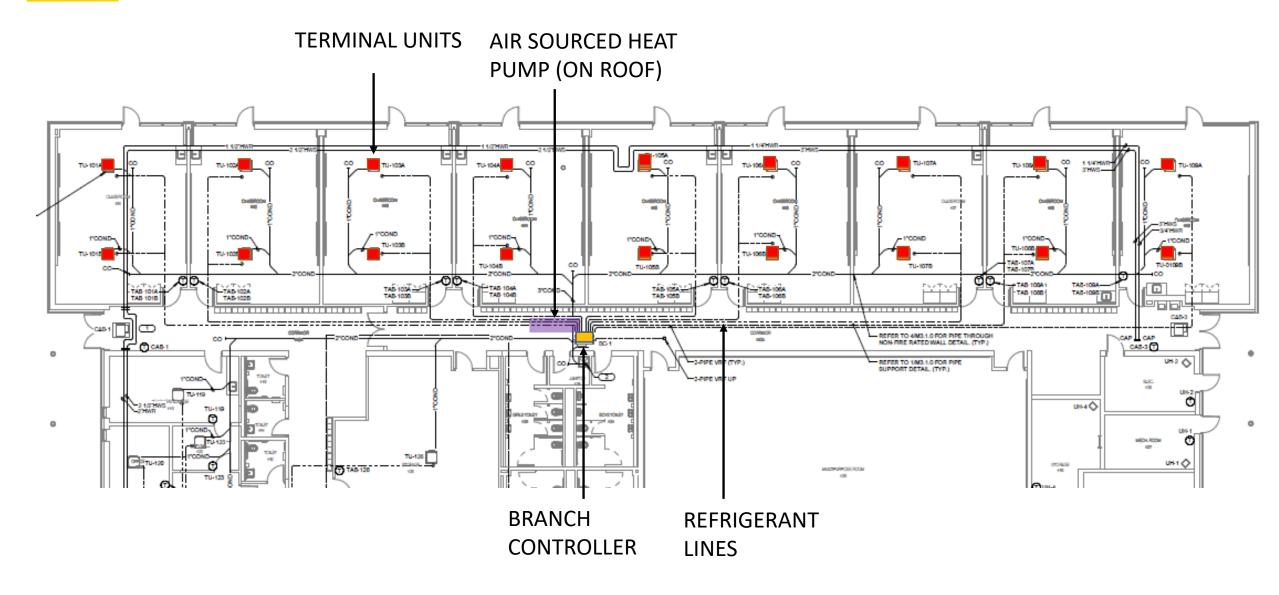

Air Source Heat Pump High Efficiency COP: 3.66

Branch Controllers

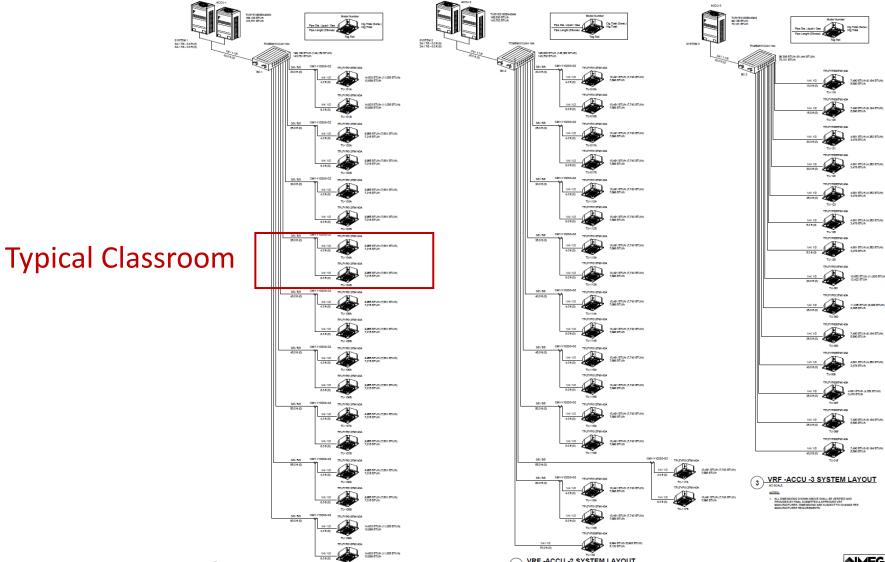
Energy Recovery allows different rooms on the same branch controller to be simultaneously heating and cooling.


Terminal Units

Located in each conditioned space.


Terminal Unit - Cassette

Variable Refrigerant Flow System (VRF)



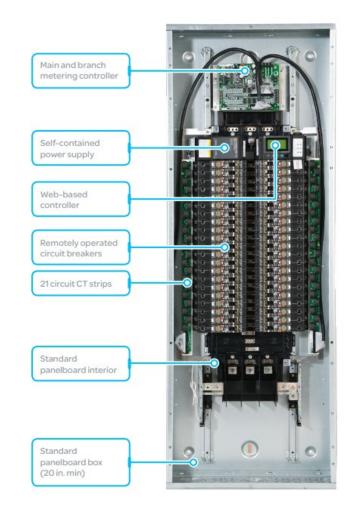
s[_©]≋

Variable Refrigerant Flow System (VRF)

Variable Refrigerant Flow System (VRF)

Variable Refrigerant Flow System (VRF)

Make sure you know what things look like. Team was surprised by the shrouds over the VRF Units.



Zone VRF Branch controllers to take advantage of simultaneous heating and cooling efficiencies. Consider what scenarios might require simultaneous heating and cooling and Zone Accordingly.

Consider implications of running refrigerant lines throughout the interior space.

Energy Efficient Lighting and DHW Systems

- All LED Lighting
- All lighting on "Vacancy" Sensors or "Occupancy" Sensor where possible.
- DHW loop on thermostat controlled "On Demand" System.
- Measurement and Verification Electrical Panels for energy monitoring

Energy Monitoring

Weekly Annual Solar Production	HVAC Lights & Carbon Plug Loads Emissions	Weekiy Annual Solar HVAC Lights & Carbon Production HVAC Plug Loads Emissions	Weekly Annual Solar Production HVAC Lights & Plug Loads Carbon Emissions
Lights Consumption	Plug Loads Consumption	Today's Heating Ventilation & Air Conditioning (HVAC) Energy Consumption	Today's Solar Panel Generation
180 reh 160 reh 140 reh 120 reh 100 reh 80 reh 60 reh 40 heh	140 kun	100 sati 80 sati 60 sati 40 sati 20 sati 0 sati Actual Actual Expected Expected Gas Electric Gas Electric April April April April	140 isan
20 ken O ken Actual Expected April April	20 ken O ken Actual Expected April April	Today's HVAC Actual vs Expected Energy Usage	20 kah O kah Actual Expected April April
Today's Actual vs Ex	kpected Energy Usage	Code Decement	Today's Actual vs Expected Solar Generation
Lights	Plug Loads	Exhaust Dampers	TAIR GOOD VERL COOD PLOELLENT

Energy Monitoring

For a Monitored Project to be successful. Not only does the modeling and execution have to be done right... The **Occupants have to behave** as expected.

Outreach and Education are Critical

Operational Considerations - Scheduling

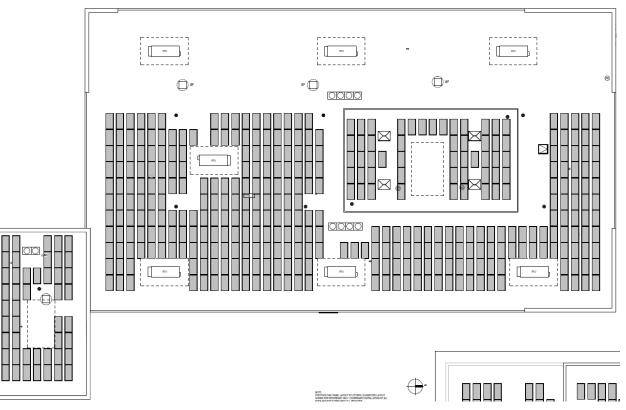
Operating schedule impacts occupant Load, lighting load, and ventilation rates

Park View School

River Trails School District 26

upancy Summary for WUFI	Occupant Type	Occupancy	Start Time	End Time	Hours	Days/Year	Include in Max (only concurrent uses)	Max	Occupant Hours per Year	Average Occupancy (= Occupant Hours per yr / 8760 hrs per yr)
nool Year (Heating Season)										
Educational										
Classrooms	Children (age 0-10)	250	8:30 AM	3:00 PM	6.50	185	у	250	300625	34.32
Classrooms	Adult Standing or Light Work	25	7:00 AM	5:00 PM	10.00	185	у	25	46250	5.28
School Offices	Adult Standing or Light Work	10	7:00 AM	5:00 PM	10.00	210	y	10	21000	2.40
District Offices	Adult Standing or Light Work	12	6:00 AM	6:00 PM	12.00	260	y	12	37440	4.27
Extracuricular School Use										
Multipurpose Room	Children (age 0-10)	160	6:00 PM	10:00 PM	4.00	5		0	3200	0.37
Multipurpose During School Day (For Ventilation) daytime occupancy is from students and teachers accounted for in Classroom Count)		0	8:30 AM	5:00 PM	8.00	185		0	0	0.00
Public Use										
Multipurpose (Adult) - AM Child Care	Adult Standing or Light Work	3	6:00 AM	8:30 AM	2.00	185		0	1110	0.13
Multipurpose (Adult) - PM Child Care	Adult Standing or Light Work	3	3:00 PM	6:30 PM	3.50	185		0	1943	0.22
Multipurpose (Children) - AM Child Care	Children (age 0-10)	15	6:00 AM	8:30 AM	2.50	185		0	6938	0.79
Multipurpose (Children) - PM Child Care	Children (age 0-10)	15	3:00 PM	6:30 PM	3.00	185		0	8325	0.95
Classroom (Public Use)	Adults	20	7:00 PM	9:00 PM	2.00	87		0	3480	0.40
nmer (Cooling Season)										
Educational										
Classrooms Pre K Summer	Children (age 0-10)	50	8:00 AM	12:00 PM	4.00	58		0	11600	1.32
					0.00					
Public								-		
Multipurpose (Children) - Camp	Children (age 0-10)	25	8:00 AM	4:00 PM	8.00	58		0	11600	1.32
Multipurpose (Adult) - Camp	Adult Standing or Light Work	2	8:00 AM	4:00 PM	8.00	58		0	928	0.11
Multipurpose (Children) - PM	Children (age 0-10)	30	7:00 PM	9:00 PM	2.00	24		0	1440	0.16
Multipurpose (Adult) - PM	Adult Standing or Light Work	2	7:00 PM	9:00 PM	2.00	24		0	96	0.01
Classrooms - Camp	Children (age 0-10)	15	8:00 AM	4:00 PM	8.00	58		0	6960	0.79
Classrooms - Camp	Adult Standing or Light Work	1	8:00 AM	4:00 PM	8.00	58		0	464	0.05
		638						297	463398.00	53

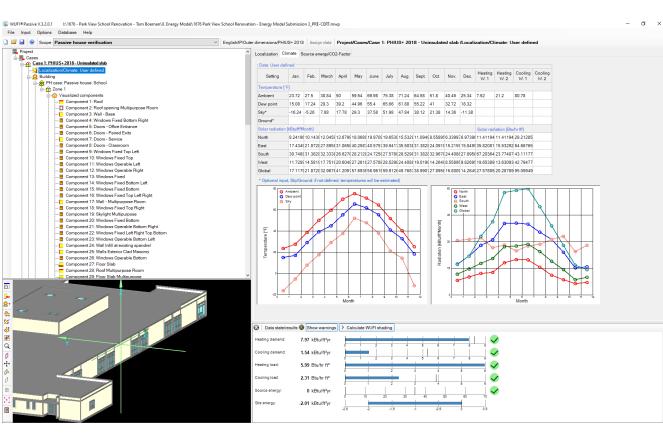
WUFI Peak Occupancy


WUFi Demand Occupancy

Operational Considerations - Scheduling

Tighten the Schedule and Make sure the owner and operating engineer are on board with the ventilation strategy.

- ICECF Grant required all Renewable production to be "On Site"
- 166.4 KW Roof top Photovoltaic Array.


Model Results

6

<mark>....</mark>

÷ 12

~ ₩ @ Q

PASSIVEHOUSE REQUIREMENTS

Certificate ci	riteria:	PHIUS+ 2018
----------------	----------	-------------

Heating demand

sensible:

specific:

latent:

target:

total:

target:

total:

total:

total: specific:

specific:

specific:	7.97	kBtu/ft²yr
target:	8.3	kBtu/ft²yr
total:	222,607.52	kBtu/yr

Cooling demand

0.38	kBtu/ft²yr
1.16	kBtu/ft²yr
1.54	kBtu/ft²yr
5.3	kBtu/ft²yr
43,126.85	kBtu/yr

Heating load specific:

5.99	Btu/hr ft²
6.3	Btu/hr ft ²
167,268.2	Btu/hr

2.31 Btu/hr ft²

64.465.63 Btu/hr

3.9 Btu/hr ft²

kWh/yr

kBtu/ft²yr

kBtu/ft²yr

kBtu/ft²vr

kBtu/yr

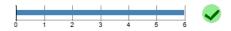
Cooling load

specific: target: total:

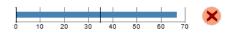
Source energy

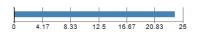
total:	545,688.86
specific:	66.66
target:	34.8
total:	1,861,783.88
specific:	66.66

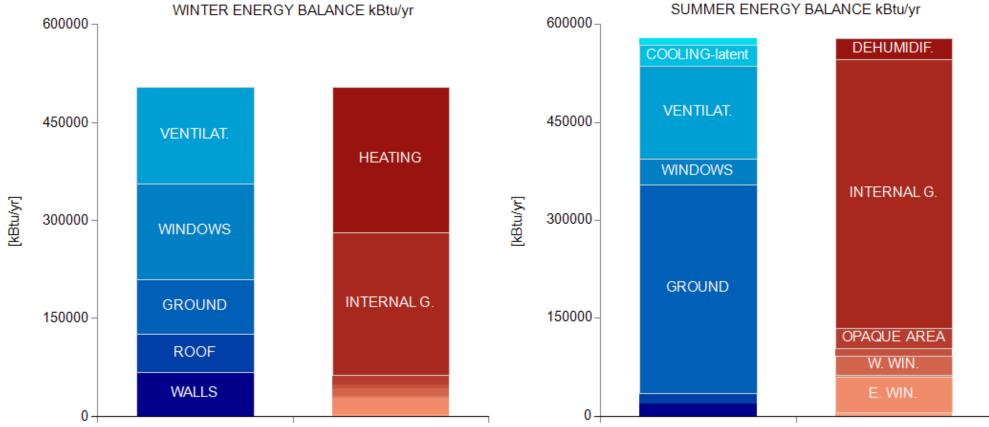
Site energy

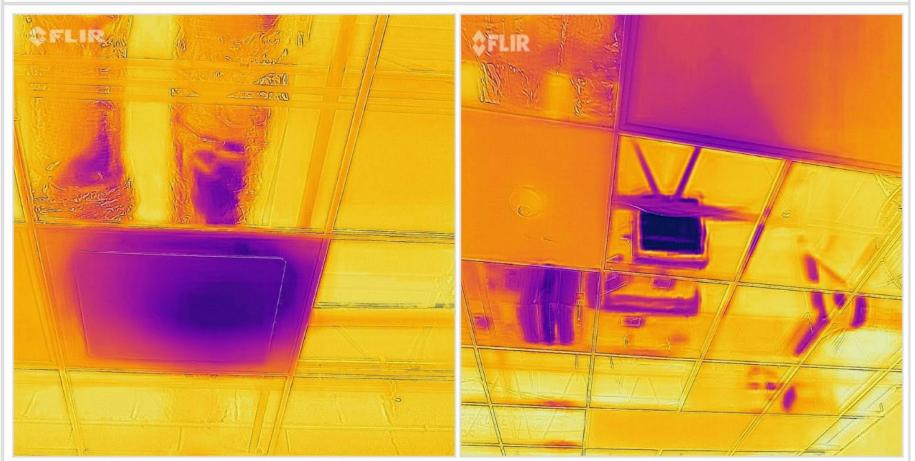

664,922.81	kBtu/yr
23.81	kBtu/ft²yr
194,888.88	kWh/yr
6.98	kWh/ft²

Air tightness

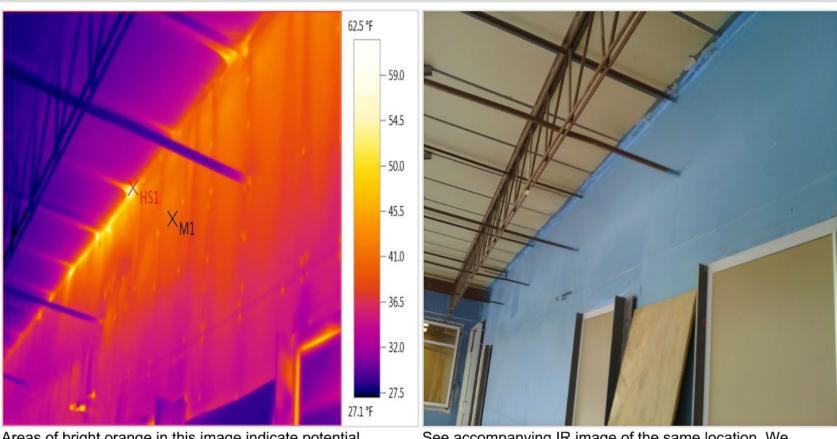

ACH50:	0.92	1/hr
CFM50 per envelope area:	0.06	cfm/ft ²
target:	0.92	1/hr
target CFM50:	0.06	cfm/ft ²


1		2 3	4	5	6	7	8	9	$\mathbf{\vee}$

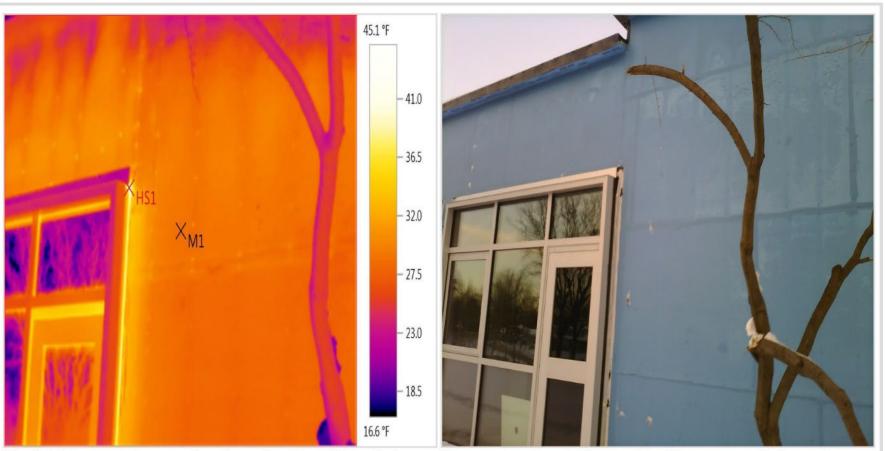



0.6 0.8 12 0.2 0.4

Model Results


Purple color in ducts indicates they are connected to the outside even though intake and exhaust are taped off.

Loose joint between DOAS main enclosure and ERV module


DOAS Units include a large volume of air outside the building envelope. And they can leak. Provide Dampers on the interior duct connections to the units.

Areas of bright orange in this image indicate potential imperfections in the air seal between the wall and roof overhang.

See accompanying IR image of the same location. We recommending double-checking the integrity of the air seal between the entire wall / roof intersection at the roof overhangs on the north and south ends of the building.

The bright orange line running down the side of the window could be a thermal bridge and not an air leak. But we'd recommend double checking that all of the window flashing is air tight one last time before concealing it with insulation and siding.

See comment on IR image. Flashing appears to be well installed.

PV Framing going in

THANK YOU!