# Comparing Two Adjacent Multi-Family Passive Buildings in NYC



Lois Arena, PE larena@swinter.com

Mark Ginsberg FAIA, LEEDAP mark@cplusga.com

# Site Location







Thank you to our clients: The Bluestone Organization / L & M Development Partners / Triangle Equities

## Data



|                       | BGDII      | BGDI    |
|-----------------------|------------|---------|
| Square Feet -Gross    | 121,433.34 | 108,979 |
| Square Fee - Zoning   | 97,058     | 94,869  |
| Number of Units       | 127        | 101     |
| Floor area / Unit     | 874        | 1,055   |
| Commercial Space -SF  | 3,007      | 523     |
| Number Parking Spaces | 49         | 35      |
| Indoor Parking area   | 7,482      | 1,852   |

## Exterior









**BGD-II** 

BGD-I

# Unit Distribution



|                | BGDII     | l   | BGDI      |     |
|----------------|-----------|-----|-----------|-----|
| Studios        | 20 units  | 16% | 8 units   | 8%  |
| One Bedrooms   | 59 units  | 46% | 50 units  | 50% |
| Two Bedrooms   | 36 units  | 28% | 26 units  | 26% |
| Three Bedrooms | 12 units  | 9%  | 17 units  | 17% |
| Total          | 127 units |     | 101 units |     |

# Interior









BGD-I

**BGD-II** 

# Resiliency



|                                                 | BGDII          | BGDI                    |
|-------------------------------------------------|----------------|-------------------------|
| Grade Elevation                                 | 5.69           | 6.47                    |
| Flood Elevation                                 | 10'            | 10'                     |
| Habitable Floor Height above<br>Flood Elevation | 8.53'          | 4.5'                    |
| Lobby Elevation                                 | 7.02           | 6.66                    |
| Egress During Flood                             | Exterior Stair | Raised recreation space |

# Zoning / Codes



|                                      | BGDII                                                  | BGDI          |
|--------------------------------------|--------------------------------------------------------|---------------|
| Code                                 | 2014 NYC Code                                          | 2014 NYC Code |
| Zoning Floor area                    | 97,058                                                 | 94,870        |
| Zoning for Quality and Affordability | Yes                                                    | No            |
| HPD Guidelines                       | 2020                                                   | 2016          |
| Height                               | 69'-3 <sup>3</sup> / <sub>4</sub> " (above base plane) | 69'1          |
| Floors                               | 8                                                      | 7             |

# Passive House Data



L+M Development Partners, Inc. PROJECT OWNER

May 29, 2020 DATE

Thomas Moore | Lois Arena **CPHC®** 

Curtis & Ginsberg Architects, LLP ARCHITECT

L+M Development Partners, Inc. CONSTRUCTION

Michael O'Donnell

ON-SITE VERIFICATION



The Designation of

#### PHIUS+ 2015 CERTIFIED PROJECT

No. 1507 Beach Green Dunes 2

> 4519 Rockaway Beach Blvd Far Rockaway, NY 11691

| INTERIOR CONDITIONED FLOOR AREA | 103,133 | ft <sup>2</sup>         |
|---------------------------------|---------|-------------------------|
| ANNUAL HEATING DEMAND           | 3.51    | kBTU/ft²yr              |
| ANNUAL COOLING DEMAND           | 3.82    | kBTU/ft²yr              |
| • PEAK HEATING LOAD             | 3.28    | BTU/ft <sup>2</sup> hr  |
| • PEAK COOLING LOAD             | 1.84    | BTU/ft <sup>2</sup> hr  |
| AIR-TIGHTNESS TEST RESULTS      | 0.06    | CFM50/ft <sup>2</sup>   |
| SOURCE ENERGY                   | 4,495   | kWh/person.y            |
| SITE ENERGY USE INDEX (EUI)     | 18.1    | kBTU/ft <sup>2</sup> yr |







BGN LIHTC, LLC/BGN Workforce, LLC PROJECT OWNER April 11, 2018 DATE

PHIUS

CPHC®

Curtis + Ginsberg Architects LLP ARCHITECT

The Bluestone Organization

CONSTRUCTION

Lois Arena, Steven Winter Associates ON-SITE VERIFICATION

| The Designation                     | on of                  |                        |
|-------------------------------------|------------------------|------------------------|
| PHIUS+ 2015 CERT                    | IFIED PRO              | JECT                   |
| No. 1311                            | 1                      |                        |
| Beach Gree                          | n Dune                 | es                     |
| 44-19 Rockaway B<br>Far Rockaway, N | each Blvd.<br>IY 11691 |                        |
| NTERIOR CONDITIONED FLOOR AREA      | 93,894                 | ft <sup>2</sup>        |
| ANNUAL HEATING DEMAND               | 3.1                    | kBTU/ft²yr             |
| ANNUAL COOLING DEMAND               | 4.6                    | kBTU/ft²yr             |
| PEAK HEATING LOAD                   | 3.5                    | BTU/ft²hr              |
|                                     | 2.2                    | BTU/ft <sup>2</sup> hr |

2.2

0.51

4,884

18.9

The Passive House Institute US Awards



PEAK COOLING LOAD

SOURCE ENERGY

**BGD-I** 

AIR-TIGHTNESS TEST RESULTS

SITE ENERGY USE INDEX (EUI)



ACH50

kWh/person.yr

kBTU/ft<sup>2</sup>yr

**BGD-II** 

### Systems



# Exterior Wall



# **Bio Swales**



BGD-II

BGD-I

# Solar Arrays



|                        | BGDII                      | BGDI    |
|------------------------|----------------------------|---------|
| Size (ft2)             | 10,200                     | 8,000   |
| Capacity (kW)*         | ≈ 180                      | ≈ 144   |
| Potential Output (kWh) | 78,000                     | 120,000 |
| % Difference           | Still commissioning system |         |

\* Approximated based on array area x 18W/ft2

## Site EUI Comparison



# Site EUI Comparison

- Major differences
  - CHP
  - Solar PV array size
  - # of apartments



Site Energy Consumption [kBtu/yr · ft<sup>2</sup>]



BG I Site Energy Consumption [kBtu/yr · ft<sup>2</sup>]



BG II Site Energy Consumption [kBtu/yr · ft<sup>2</sup>]



## **ENERGY USE: MODELLED VS. ACTUAL**



Informed estimate based on defaults + operational assumptions



<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-NC-ND</u>

# When do you heat / When do you cool?



#### WHOLE BUILDING GREENHOUSE GAS EMISSIONS: RELATIVE TO LL97 2030 TARGET



1. GHG emissions use 2024-2029 emissions coefficients outlined by Local Law 97 of NYC. Note that the emissions factors for 2030 have not yet been established. There is a strong likelihood that the combination of Indian Point closing and gains made as part of the CLCPA, the coefficient will be similar to the one set for 2024-2029.

# Conclusions

# Super SW to fill in

# Resident survey C+GA to fill in

# **Conclusions:**

- Many ways to meet Passive House and get similar results.
- Heating and Cooling are a small part of the load. So, spending a lot of money on those systems does not make sense but making buildings electric does.
- Ground source may give greater resident comfort.
- Ground Source Heat pumps higher first cost and lower operating cost – slightly.
- Unitized vs. Centralized ERV, similar operation costs, different first costs and maintenance cost.
- ICF's have many advantages but need more sub contractors who want and know how to do.
- Waste Water heat recovery systems / Ground Source heat pump for hot water are the next frontier

# Thank You!



Lois Arena, PE larena@swinter.com Mark Ginsberg FAIA, LEED<sup>AP</sup> mark@cplusga.com

# Old beyond

# Funding



#### **BGDII**

#### Tax Exempt Bonds

Subsidy loans from NYC Housing **Development Corporation and NYC** Department of Housing Preservation and Development

Tax Credit Equity.

LIPA no energy funding

Tax Exempt Bonds

Subsidy loans from NYC Housing **Development Corporation and NYC Department of Housing Preservation and Development and Department of Justice** 

Tax Credit Equity.

#### LIPA no energy funding

# Resiliency - Egress



SUBWAY ABOVE

**BGD-II** 

**BGD-I** 

# **Flood Mitigation for Residential Spaces**

- All residential units will be located BGD-I: 4.5' and BGD-II: 8.53' above current FEMA Base Flood Elevation
- Lobby, Parking, and Crawl space will have flood vents to relieve water pressure
- Elevator will have automatic control to prevent cab from descending into flood waters, Elevator Machine room is located above the flood plane
- All mechanical spaces are located above the flood plane
- Ground floor finishes will be designed to be flood damage-resistant materials





BGD-II

# **Flood Mitigation for Residential Spaces - Differences**

- Emergency Egress and Area of Rescue from Laundry Room is above the Base Flood Elevation
- Photovoltaic System
- Daylight corridor provide light in case of power outage

- Emergency Egress and Area of Rescue is on the community Terrace which is above the Base Flood Elevation
- Photovoltaic System and Co-generation hot water that can provide for Emergency Power
- Daylight corridor and stairwells provide light in case of power outage





BGD-I

# **Flood Mitigation for Commercial Space**

- Flood Barrier will be provided at openings
- Structure will be designed to withstand hydrostatic pressure
- Emergency Egress will be provided above the flood plane
- Sump Pump will be provided to drain accumulated vapor and seepage
- Finishes will be designed to be flood damage-resistant materials





**BGD-**

BGD-II

# **Flood Mitigation - Details**





# Zoning setbacks





**BGD-II** 

BGD-I

## HPD Design Requirements

| Space             | BGD-II (2016 Standard) |                   | BGD-I (2000 Standard) |                   |
|-------------------|------------------------|-------------------|-----------------------|-------------------|
|                   | Area                   | Minimum Dimension | Area                  | Minimum Dimension |
| Studio            | 200 sf                 | 9'—0"             | 250 sf                | 11'-0"            |
| Living Room       | 170 sf                 | 10'—0"            | 160 sf*               | 11'-0"            |
| Primary Bedroom   | 110 sf                 | 9'—6"             | 130 sf                | 10'-0"            |
| Secondary Bedroom | 100 sf                 | 9'—0"             | 110 sf                | 9'-4"             |

#### \* = 170 for Three Bedroom

The 2016 standards reduced closet and kitchen requirements from the 2000 standards and typically units were 10% smaller
# **Achieving Passive House**





- Super insulated Building Envelope
- uPVC window has better energy performance
- All LED fixtures
- Energy Star/Water sense fixtures

## BGD-I

- Cogen provide power and hot water
- Air to air heat pumps
- Unitized EVRs

#### **BGD-II**

- Ground Source heat pump
- Centralized ERVs

# Ventilation

# Unitized ERV BGD-I







#### Performance

- Boost flow more easily achievable in apartments
- Better heat recover efficiency, in general
- Better compartmentalization of apartments
- Preheater recommended in cold climates
- Conditioning supply air more difficult

#### Design

 Two penetration in each apartment requires additional focus on air sealing

#### Maintenance

• Needs access to apartment to change filter periodically

## Central ERV BGD-II





#### Performance

- Easier to precondition Supply Air
- Little to no control for individual apartment boast

#### Design

- Increase shafts/ducts and firestopping penetrations. Cluster ducts to reduce runs.
- Aeroseal of duct systems to branches

#### Maintenance

- Reduce number of filters and access to apartment
- Balancing is more challenging

# Exterior Walls

## Block vs. ICF



#### Pros

- Reduces Trades/More done with one system
- Watertight Quickly
- Greater Design Flexibility Great Sound Isolation (OITC 41 to 65)
- Energy Efficiency System with high R-value and integrated air barrier

### Cons

- Unfamiliar construction technology and limited sub contractor
- Implementation crucial to maintain vapor/air barrier continuity

## Block vs. ICF



#### Pros

• Ease and knowledge of construction method

### Cons

- Need more diligence on air tightness
- May require more structural thermal break for façade elements







## Beach Green Dune I – Thermal Bridg





Integral cast insulated jamb are cleanest tightest detail

Avoid Panel Joint at Opening, which allow water/air infiltration

- Min. Thermal bridge of Brick Angle
- Coordination of Min. Penetration Sleeve

Provide reinforcement at floor edge to prevent gaps

BGD-II



## Windows





## Details





# BGD-II

BGD-I

# Heating and Cooling

## Heat Pump/VRF – BGD-I



## **Selection Considerations**

- Refrigerant leaks
- Larger buildings require design compliant with ASHRAE 15
- Smallest unit 4,500 BTU, could really use a 2,000 BTU unit
- How you have tenants pay for cooling and owner pay for heating?
- Where to run condensate drains?
- Can be coupled with many terminal units.







## Ground Source Heat Pump – BGD-II



#### Maintenance Operation

- If WSHPs in units, potential for noise from compressor
- Allows for simultaneous heating and cooling
- Can be coupled with many terminal units.

## Ground Source Heat Pump BGD-II



# Site

Site Design



**BGD-I** 

Site





BGD-II

# Blower Door Testing

## BGD I – Intermediate Testing



# BGD I – Final Testing

- ✓ Method A test: 7,626 cfm50
- ✓ Method B test: 5,518 cfm50
  - < 6,309 cfm50 target
- ✓ Determination = PASS







# BGD II – Intermediate Testing





## BGD II – Final Testing

- ✓ Method A test: 7,941 cfm50
- ✓ Method B test: 4,854 cfm50 <</li>
  6,064 cfm50 target
- ✓ Determination = PASS







## BGD I – water metering...a meter too far?



- All fixtures need to be within 15' – Building was designed to meet.
- Unit water meters would save 15% to 20% of water consumption.
- Rent regulations do not permit.

# Cost

# What were the glitches in BFGD-II PV?

## Photo Voltaic



# Lessons Learned

# **BEACH GREEN DUNES**



89% Modeled vs Actual

© Passive House Institute US

**BGD-I** 

# Why? Thermostat Settings





**BGD-I** 

Why? Co-Gen Valve





- 1. Post 2003 Building sample is made up of NYC buildings with at least one full year of consumption data and includes approximately 94% buildings with gas heating, 6% with electric heating.
- 2. PH-1A & PH-1B have gas heating and hot water. The remaining projects have electric heating (VRF)
- 3. PH current target based on PHI standard 38 kBtu/sf/yr. Ranges from 20 (model) upper 20's-low 30s (25% gas + 75% electric fuel mix typ. of gas DHW + elec heat) when building commissioned.

# Energy Consumption / Generation
## BG I: Combined Heat & Power (CHP)

- Sized for: DHW demand
- Offsets ~50 % of DHW
- Provided ~70,000 kWh in 2020
- Total gas usage: 10,409 therms for CHP
  - Building total 18,568 therms



Cost



|                                     | BGDII     | BGDI      |
|-------------------------------------|-----------|-----------|
| Cost per Square Foot                | \$ 318.00 | \$ 233.00 |
| Envelope (ICF V Block & insulation) | 8.62%     | 7.99%     |
| Air Sealing                         | 0.26%     | 0.24%     |
| Ground Source Heat Pump / VRF       | 4.45%     | 4.31%     |
| ERV's                               | 2.2%      | 0.31%     |
| Solar                               | 2.17%     | 2.20%     |
| Co-Gen                              | 0%        | 0.56%     |

BGD-I completed 2017 BGD-II completed 2019

## Passive House buildings are more resilient

