

PHIUS 2021 MECHANICAL SUMMIT

APRIL 19 - 22

summit.phius.org

Moving Air Efficiently & Quietly Through Ducts

Allison A. Bailes III, PhD Energy Vanguard

abailes@energyvanguard.com

Allison Pataki - Home | Face... facebook.com

Allison Mullis bellflight.com

Jason Allison Hockey ... hockeydb.com

AIG Names Allison Barr... businesswire.com

Allison Nyholm - Director | St... steptoe.com

Allison Corkery — Atlan... afsee.atlanticfellows.org

Allison Kolker, MD - MU ... muhealth.org

Wilbanks, PA-C | U.S. Der... usdermatologypartners.com

Propeller | Allison Knowles propellerconsulting.com

Allison Walker Torres mynews13.com

Allison Anderson | Fole... foleyhoag.com

Allison Webber | UCSF Heal... ucsfhealth.org

Allison Shearmur Dead: 'Star Wars' and ... hollywoodreporter.com

Allison Rimm | Mission ... allisonrimm.com

Allison N. Allread, APRN,CNP | ... premierhealth.com

Allison Hill Named New ABA CEO publishersweekly.com

Allison Chiaramonte - Warburg R... warburgrealty.com

Allison Harms | Texas A&... geosciences.tamu.edu

Allison Pataki - Home | Facebook facebook.com

Method #1

Pick any contractor & let them decide everything

Method #2

Use ACCA Manual D

ACCA Manual D

Available static pressure - the rated pressure difference across the furnace or air handler minus the pressure drops across the external, non-duct components

- Coil
- Filter
- Balancing dampers
- Registers & grilles

Available static pressure is the pressure available for the ducts after accounting for all other pressure changes.

Static Pressure for Entire House

External static pressure

Pressure losses

Coil

Heat exchanger

Supply diffusers

Return grilles

Filter

Humidifier

Balancing damper

Other device

Available static pressure

Heating

Cooling

(in H2O)

(in H2O)

<0.60>

[0.50]

0

0

0.03

0.03

0.10

C

0.03

0

C

0

0.03

0.03

0.10

0

0.03

0.41 0.31

2 causes of air resistance

1. Friction

2 causes of air resistance

2. Turbulence

Turning Vanes

Equivalent length - the length of straight duct that would yield the same pressure drop as the fitting

EL Values		Number of Downstream Branches to End of Trunk Duct or Number of Downstream Branches to a Trunk Reducer							
Fitting		0	1	2	3	4	5 or More		
0	2A	35	45	55	65	70	80		
	2B	20	30	35	40	45	50		
0	2C	65	65	65	65	70	80		
	2D	40	50	60	65	75	85		
	2E	25	30	35	40	45	50		
	2F	20	20	20	20	25	25		
0	2G	65	65	65	70	80	90		
	2H	70	70	70	75	85	95		
Note: If the trunk has a reducer, count down to the reducer; then begin a new count after the reducer.									

	Round and Oval Elbow EL Values							
	8		©		9	(2
R/D 8A	Smooth	4 or 5 Piece	3 Piece	Smooth Mitered	Easy Bend	Hard Bend	3-Piece 45°	2-Piece 45°
Mitered (R = 0)		_		75	4-Piece	4-Piece 30	- 10	15
0.75	20	30	35	1—1	25			
1.0	15	20	25	_	3-Piece	3-Piece 35		
1.5 or Larger	10	15	20	_	30			

Equivalent length - just the fittings

Total effective length - equivalent length of the fittings plus the actual lengths of the straight runs

Supply Equivalent Length of Fittings

Manual D-Fittings

User Defined Fittings

280 ft

Close

AH1 Mitsubishi Outdoor Unit: MXZ-3C24NAHZ2-U1 Indoor Unit: SEZ-KD09NA4R1.TH Type: Horizontal ducted TËSP: 0.2" w.c. Location: Encapsulated attic 1 Master Bedroom 1 Master Bath 49 cfm Closet 10 14" Pair-of-pants 4 x 12 26 x 6 102 cfm 10 " 1 Hall 14 x 25 Closet Attic Stairs 300 cfm 4 x 12 101 cfm 1 Bedroom 1 4x8 /√ 1 Bath 1 4' 32 cfm 1 Foyer

The critical path is the path from return to supply with the highest pressure drop

Critical path:

Hall return grille to foyer supply vent

Fittings dominate pressure drops...

$$FR = \frac{ASP}{TEL} \times 100$$

$$FR = \frac{0.31}{424} \times 100 = 0.073 \ iwc/100 \ feet$$

The friction rate calculated here is used to size all duct runs

Most duct runs will be oversized using critical path method.

→ Must use balancing dampers

Friction Rate Chart

Figure 6-5

Key Variables to Juggle

- Blower power
- Non-duct pressure drops (filter mainly)
- Fitting quality
- Number of fittings
- Size of ducts

The proof is in the pressure

Calculating Total External Static Pressure (TESP)

- Measure static pressure on return side
- Measure static pressure on supply side
- Add the two numbers without negative sign!

Example:

```
SP_{ret} = -0.06 \text{ i.w.c.}
```

$$SP_{sup} = +0.09 \text{ i.w.c.}$$

$$TESP = 0.06 + 0.09 = 0.15 i.w.c.$$

High-MERV filtration at a low cost

Sizing high-MERV filters

Minimum:

2 square feet of filter area*

per

400 cfm of air flow

*Not including pleats Length x width

2 sf/ton → 200 fpm face velocity

Before

After

30% less pressure drop

Ducting an ERV or HRV

EV Premium Medium - Ventilation Performance									
Ext. Static Pressure		Net Supply Airflow		Gross Airflow					
				Supply		Exhaust			
Pa	in. wg	L/S	CFM	L/S	CFM	L/S	CFM		
25	0.1	110	233	113	239	111	235		
50	0.2	106	225	109	231	107	227		
75	0.3	102	216	105	222	103	218		
100	0.4	99	210	102	216	99	210		
125	0.5	95	201	98	208	95	201		
150	0.6	91	193	94	199	90	191		
175	0.7	87	184	90	191	86	182		
200	0.8	83	176	85	180	81	172		
225	0.9	77	163	80	170	75	159		
250	1	71	150	73	155	69	146		

Resistive ducts — Higher pressure — Lower air flow

Allison A. Bailes III, PhD

abailes@energyvanguard.com

www.energyvanguard.com/blog