MEASURING ENERGY COST AGAINST BUILD COST ON TWO PASSIVE HOUSE PROJECTS

TOM BASSETT-DILLEY ARCHITECT

301 HARRISON STREET OAK PARK ILLINOIS 60304

AIA

Certified Passive House Consultant

Client Focus

Evolutionary Home Builders

BY BRANDON WEISS

Passive House Certified Builder

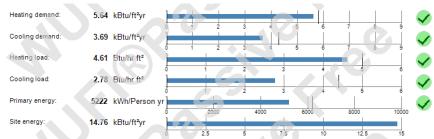
Living Future Accredited Professional

WELL AP

LEED AP

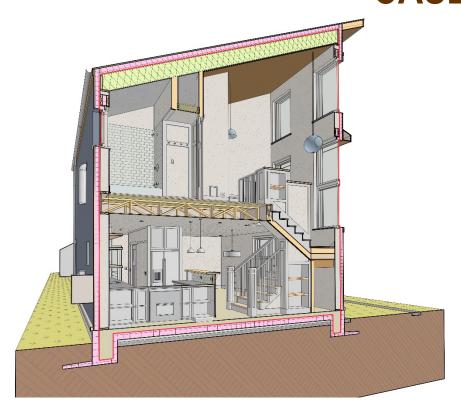
TBDA/EHB JOINT PASSIVE HOUSE WORK TO DATE

CASE STUDY PROJECTS



Case 1: Oak Park Certified PHIUS+ 2015 Slab-on-grade 1,724s.f. iCFA

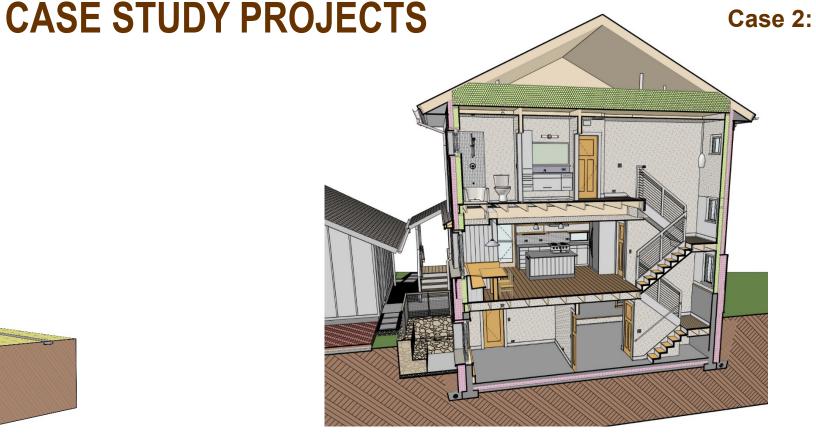
Case 2: Hinsdale Pre-Certified PHIUS+ 2015 Full basement 2,348 s.f. iCFA



BY BRANDON WEISS

Case 1:

Case 1: Oak Park


Walls: 2x8/BIB/Plywd+Prosoco, 4" polyiso, R-50

Slab: 4" concrete, 6" EPS, R-27

Roof: 14"TJI/BIB/Plywod+Prosoco, 5" polyiso, R-83

Zola Thermo uPVC, Uw=0.147

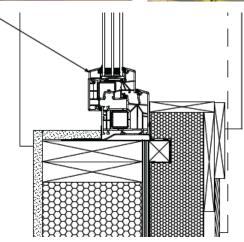
HVAC: Zehnder/Mitsubishi, internal circulation

Case 2: Hinsdale

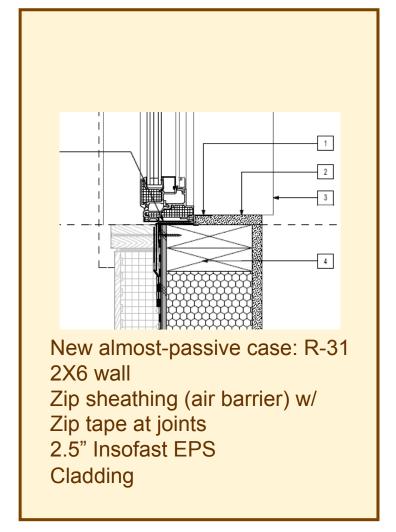
Walls: 2x6/cell./Zip shthg., 5.25" EPS, R-43

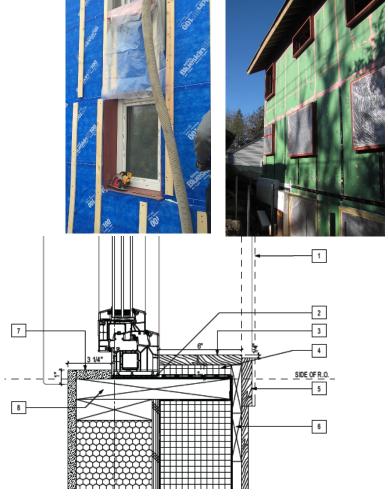
Slab: 4" concrete, 5" EPS, R-21

Roof: 24" cellulose, vented attic, R-85


Zola Thermo uPVC, Uw=0.145

HVAC: CERV/Mitsubishi(s), transfer grilles




Case 1: R-50 wall 2X8 wall Prosoco air barrier o/ bucks 4" Polyiso WRB Furring strips + Cladding

WALL SYSTEM COMPARISON

Note: code-built wall assembly not drawn.

Case 2: R-43 wall
2X6 wall
Zip sheathing (air barrier) w/
Prosoco over bucks
5.25" EPS
WRB
Furring strips + Cladding

COST TO BUILD COMPARISON

[Passive House (built) condition is Base condition]

"Insofast" option includes the following savings:

- 2X6 wall (vs. 2X8 at Case 1)
- ½" Zip sheathing (vs. 5/8" plywood at Case 1)
- 2.5" Insofast (modeled) or 3" EPS (priced)
- Same roof and slab
- Foundation at Case 2: 4.5" EPS (vs. 10" at Passive)
- Same HVAC
- Same windows

Total savings:

• Case 1: \$16,432

Case 2: \$7,210

Code-built option included these changes:

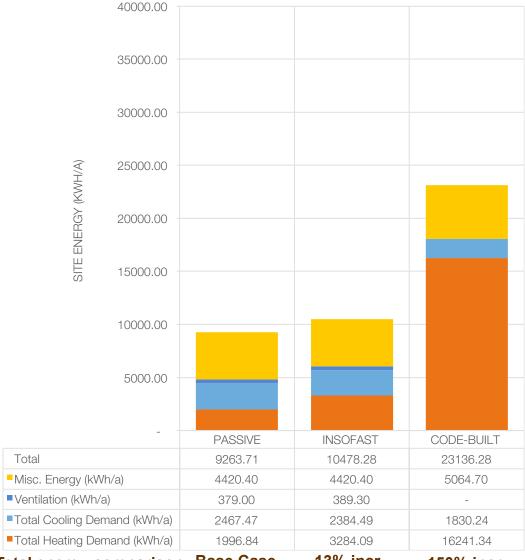
- 2X6 wall w/R-21 hi-density batts
- No exterior insulation
- Roof:
 - Case 1: 16" TJI/BIBs, no exterior insulation
 - Case 2: R-50 blown cellulose
- Foundation:
 - Case 1: same as Passive (frost-protected)
 - Case 2: dampproofing, 2" XPS
- Slab:
 - Case 1: same as Passive
 - Case 2: 1" XPS
 - Windows: Jeldwen U=0.3, SHGC=0.21
- HVAC: 96% gas, 13 SEER AC, gas DHW*, exhaustonly vent.

Total savings:

• Case 1: \$42,518

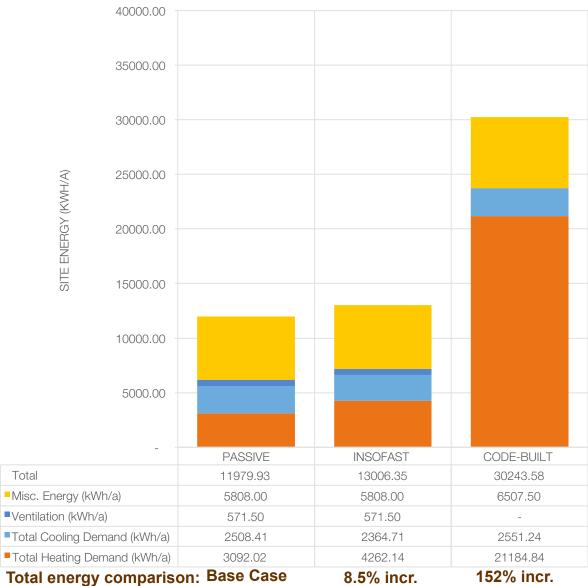
Case 2: \$28,106

(Note—HVAC more expensive on Case 1 code-built!)



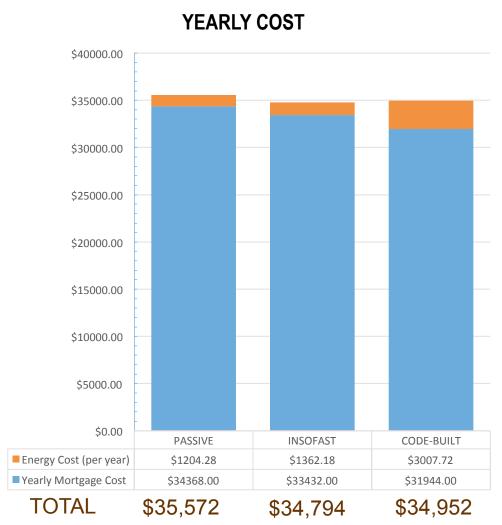
Case 1:

YEARLY ENERGY COMPARISON



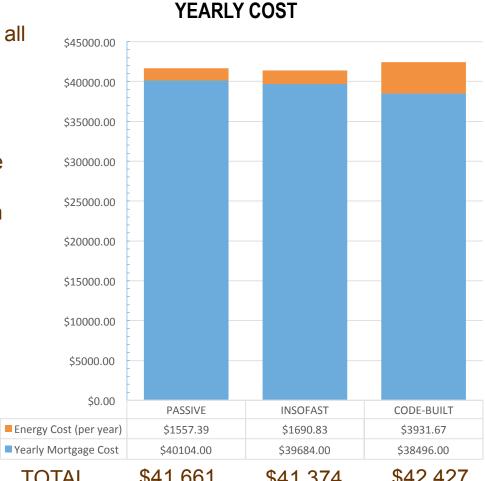
323% incr.

Total energy comparison: Base Case 13% incr. 150% incr.



18% incr.

Space condit. comparison: Base Case


COST OF OWNERSHIP COMPARISON

Case 2:

Using:

- \$0.13/kw electricity cost, all houses all electric
- 4% interest on 30-yr mortgage
- No increase on energy cost included

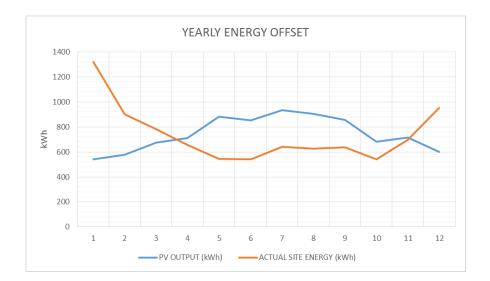
\$41,661

\$41,374

\$42,427

SOME TAKE-AWAYS & QUESTIONS

- 1. Cost of ownership is a wash! Better to invest in house instead of pay more for energy, an uncertain cost over time.
- 2. But--getting more money on a loan from a bank can be a sticking point: enlightened appraisal needed.
- 3. The more efficient our heating devices, the less impact insulation will have on overall energy (comfort and durability still major considerations though).
- 4. We're close to a "sweet spot" for ideal thermal envelope investment, but the "Insofast" route looks sweeter.
- 5. Cooling demand is lower on less insulated envelopes in our climate.
- 6. Should NZE have a place at the table when site conditions allow? (see next slides...)



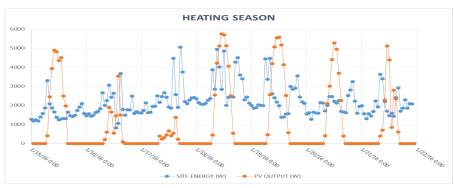
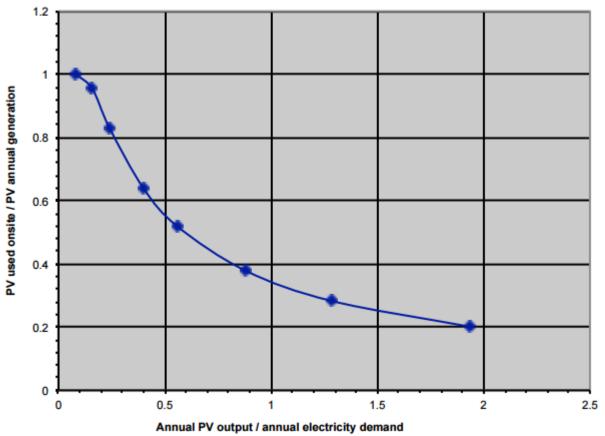

NZE DEFINITIONS


Table 1 - National Average Source Energy Conversion Factors

Energy Form	Source Energy Conversion Factor (r)	
Imported Electricity	3.15	
Exported Renewable Electricity	3.15	
Natural Gas	1.09	
Fuel Oil (1,2,4,5,6,Diesel, Kerosene)	1.19	
Propane & Liquid Propane	1.15	
Steam	1.45	
Hot Water	1.35	
Chilled Water	1.04	
Coal or Other	1.05	

DOE conversion factors http://energy.gov/sites/prod/files/2015/09/f26/bto_common_definition_zero_energy_buildings_093015.pdf



PV IN PHIUS+2015

PV onsite utilization, Zone 5A

PHIUS+ 2015 Calculators			
*Results in green			
iCFA (ft2)	1290.3		
# bedrooms	3		
Total envelope area (ft2)	5320		
Net Volume for press. test (ft3)	16322		
Primary Energy			
Primary Energy Target (kBTU/ft2.yr)	65.58		
Air-tightness			
Air-tightness allowance (ACH50)	0.98		
Lighting & Plug Loads			
Televisions + Misc. Elec. Loads (kWh/yr)	1435		
	100%		
Interior lighting (kWh/yr)	495		
	100%		
Exterior Lighting (kWh/yr)	33		
3 3 3 (),			
	100%		
	20		
Garage Lighting (if present) (kWh/yr)			
PV Utilization			
Site electricity (kWh/yr)	3879		
Output for an DV/Weller (IAM/e/m)	2526		
Output from PV Watts (kWh/yr) Annual PV Output/Annual Electricity Demand	0.65		
Utilization fraction from utilization curve	0.5		

Primary Energy offset by PV (kBTU/ft2.yr)

10.55

COST TO NZE COMPARISON

USING DOE DEFINITION

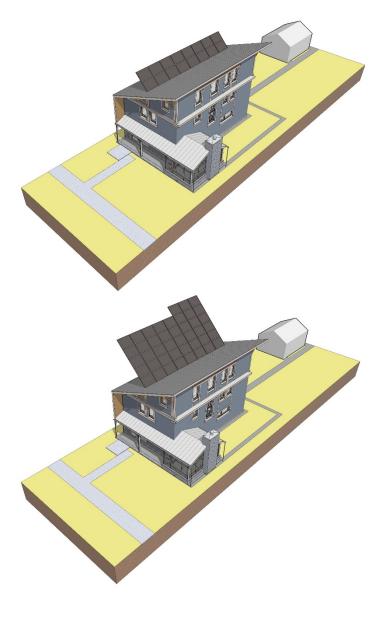
	PASSIVE	INSOFAST	CODE-BUILT
Net Zero Construction Cost	\$624,200.00	\$608,768.00	\$659,482.00

6.05kW array, 18 panels

6.30kW array, 18 panels

25.5kW array, 74 panels

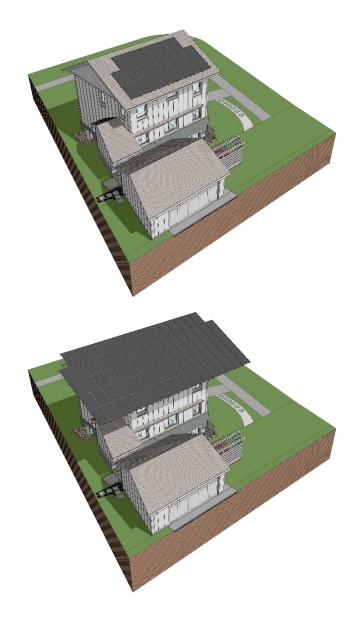
Using:


- \$4,000/kW installed (too high?)
- 345W per panel

	PASSIVE	INSOFAST	C O DE-BUILT
Net Zero Construction Cost	\$783,000.00	\$776,790.00	\$835,894.00

8.25kW array, 24 panels 8.5 kW array, 25 panels

83 kW array, 83 panels



NZE COMPARISON

These illustrate the difference between array size for Passive vs. codebuilt.

If you're thinking NZE, you have to think about your roof area!

QUESTIONS/COMMENTS/RUDE GESTURES

THANKS.

THIS PRESENTATION WILL BE POSTED ON TBDA BLOG, WWW.DRAWINGONPLACE.COM/JOURNAL

