Design Principles for Heat Pumps in Low Load Buildings With Myth Busting!

Benjamin Knopp - April 2021

Why Heat Pumps? Many reasons:

- Low carbon emissions which continue to decline
- Low cost (install + operating)
- Unparalleled comfort (with variable speed)
- Safer than combustion heaters

"Compared to radiators, forced air systems provide dry heat."

Low winter humidity comes from air leakage not the heating source.

Heat Pump Basics Efficiency/Carbon Comparison

- Heat pumps: move heat from one location to another: out during the summer (AC) and in during the winter (heating)
- Why generate heat when you can move it around at a fraction of the cost?

Site Efficiency:

- Fossil fuel heaters: 50-97%
- Electric resistance: ~100%
- Electric heat pumps: 200-500%

Carbon Emissions: IbCO₂/MMBtu

- Fossil fuel heaters: 284-159
- Electric resistance: 261
- Electric heat pumps: 131-52

- 1. Heat load calculation
- 2. Equipment selection
- 3. Filtration design
- 4. Duct design
- 5. Termination design

" "It is important to start with an accurate heat load calculation."

ACCA Manual J or in-depth monitoring

- 1. Heat load calculation
- 2. Equipment selection
- 3. Filtration design
- 4. Duct design
- 5. Termination design

2. Equipment Selection **Climate-Dependent**

Dry climate: size to the highest load (cooling vs heating)

partial-load performance

resistance backup if possible

Cold climate: use cold-climate heat pumps, balance between capacity and

Humid/Mixed Humid climate: focus on moisture removal and avoid electric

What Kind of HP? Single, Multi, Variable-speed

Examples:

- Single speed: 0% or 100%
- Multi-speed: 0%, 70%, 100%
- Variable-speed: 0%, 20%, 30%, ... 90%, 100%

"You can't really oversize variable speed equipment because it can ramp down."

Oversized variable speed = single speed

"Ductless mini-splits are more efficient than ducted mini-splits."

Two reasons: ratings vs reality & soiling

- 1. Heat load calculation
- 2. Equipment selection
- 3. Filtration design
- 4. Duct design
- 5. Termination design

"You can't use high MERV filters with ducted mini-splits because they don't have enough fan power."

You could use HEPA...

- 1. Heat load calculation
- 2. Equipment selection
- 3. Filtration design
- 4. Duct design
- 5. Termination design

"Ducted mini-splits only work with short ductwork."

Resistance is the problem, not duct length.

"ERVs and HRVs help distribute conditioned air around the home."

Non-conditioning ERVs/HRVs just provide less-uncomfortable outdoor air

"Every room should have a dedicated return air duct."

Every room should have a return air pathway

"Door undercuts are not a sufficient return air pathway."

The undercut is not the only path

- 1. Heat load calculation
- 2. Equipment selection
- 3. Filtration design
- 4. Duct design
- 5. Termination design

"The location and height of return air intakes is important for comfort."

Comfort comes from properly delivering supply air

"Supply registers should be located at exterior walls, near windows."

TRUE & FALSE

True for most existing construction False for low-load buildings

Design Best Practices Don't forget to finish the job!

- 1. Heat load calculation
- 2. Equipment selection
- 3. Filtration design
- 4. Duct design
- 5. Termination design
- 6. Quality installation!
- 7. Commissioining, airflow balancing, and monitoring!

I TO TRADUCTION TO THE REAL PROPERTY OF

Thanks for Watching!

Benjamin Knopp

knopp@think-little.com

