

ROCKY MOUNTAIN INSTITUTE

Martha Campbell | September 30th, 2017

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.

WHO WE ARE

OUR MISSION IS TO DRIVE THE EFFICIENT AND RESTORATIVE USE OF RESOURCES

RMI's Theory of Change

CONCEPT

The Problem

The Problem

Source: Garber, Megan. 8 Guys, 6 Weeks: How the Cell Phone Was (Finally) Invented. The Atlantic. 2013.

The Solution

Energie Sprong

QUALITY

NON-INTRUSIVE

AFFORDABLE

LOOK & FEEL

Net-zero energy homes with long performance warranties Refurbishment within a week to 10 days

Financeable through energy cost savings

Attractive and comfortable homes

Market Organization Model

VALIDATING THE BUSINESS MODEL

Socializing the Concept – Supply

Technical Feasibility and the "Investment Envelope"

Feasibility

Is ZNE economically and technically feasible for San Francisco Bay Area affordable housing?

Category: 5-9 unit building Market Share: 8.9% (~6.2K)

6 Unit Prototype

- Built pre-1980s
- 4,725 sf
- 3 stories
- Row home
- Furnace, no cooling*
- Individual gas HW heater

Category: 10-19 unit building Market Share: 22.5% (~16K)

15 Unit Prototype

- Built pre-1980s
- 11,270 sf
- 3 stories
- Stand alone building
- Furnace, no cooling*
- Central gas HW heater

Category: 20+ unit building Market Share: 66.2% (~46K)

65 Unit Prototype

- Built pre-1980s
- 40,900 sf
- 5 stories
- Stand alone building
- Central boiler, no cooling*
- Central gas HW heater

^{* 58%} of San Francisco homes use natural gas, 36% electricity according to an ACEEE 2017 report

Value Proposition – 6 Unit Prototype

Note: Debt Service Coverage Ratio assumed to be 1.4. Debt capacity calculated using a 5% cost of debt and amortized over 15 years.

* Utilities are assumed to be reduced 85% for electricity, 100% for natural gas, 20% for water and sewer. O&M costs are modeled to be reduced 25% and replaced with an Energy Service Agreement for a performance guarantee.

6 Unit Prototype: ZNEc Retrofit vs. Baseline

With incentives, the ZNEc retrofits is well below the increased debt capacity.

^{*} The 25 YR PV was calculated using a 5% discount rate and an escalation rate of 2.35%, which is a blended average rate based on last 10 years of gas and electric escalation in California from the EIA. The water escalation rate is assume to be 5%, well below historical rates.

Value Proposition – 65 Unit Prototype

- Note: Debt Service Coverage Ratio assumed to be 1.4. Debt capacity calculated using a 5% cost of debt and amortized over 15 years.
- * Utilities are assumed to be reduced 85% for electricity, 100% for natural gas, 20% for water and sewer. O&M costs are modeled to be reduced 25% and replaced with an Energy Service Agreement for a performance guarantee.

65 Unit Prototype: ZNEc Retrofit vs. Baseline

Even with incentives, the economics are more challenging for larger, high rise buildings.

^{*} The 25 YR PV was calculated using a 5% discount rate and an escalation rate of 2.35%, which is a blended average rate based on last 10 years of gas and electric escalation in California from the EIA. The water escalation rate is assume to be 5%, well below historical rates.

The Solution Cost Curve

With incentives most low-story projects are well in the money.

	6 Unit Prototype	15 Unit Prototype	65 Unit Prototype
Current Zero Net Carbon Retrofit Cost (\$/Unit)	\$19,013	\$22,255	\$22,296
Cost With Current Incentives (\$/Unit)	\$7,527	\$8,985	\$11,329
Price Point for 15 Year Discounted Payback Period (\$/Unit)	\$11,808	\$14,590	\$7,839
Cost Reduction Required for 15 Year Discounted Payback Period (Without Incentives/With Incentives)	37.9% / 0%	34.4% / 0%	64.8% / 30.8%

^{*}Energy savings PV calculated using a 5% discount rate and an escalation rate of 2.35% for the 6 unit prototype, 2.28% for the 15 unit prototype, and 2.48% for the 65 unit prototype. Escalation rates are a blended average based on 10 years of gas and electric escalation in California from the EIA. Water and sewage savings calculated assuming 5% discount rate and 5% escalation rate.

Socializing the Concept – Demand

Challenges Pain Points: Demand

Model Addresses	Addressable Issues	Issues to Avoid
Trust in Accuracy of Models	Affordable Housing Has Low Risk Tolerance	Land Mines/Code Triggers
Maintenance	Compatibility of Multiple Funding Sources	Lender Tolerance
Tenant Disruption	Timing	Diversity of Building Stock
The Cost vs. Reward Balance	Technology Risk	SF Lacks Financing
Convenience	Public Policy Alignment	
Low Volume	Codes/Permits	
Technical Knowledge	Language/Perspective	

Challenges Pain Points: Supply

Model Addresses Addressable Issues **Issues to Avoid** Risk of Underperformance **Technology Bias** Ineffective Zoning Complexity Prescriptive Code Culture Perverse Incentives Supply Chain Engagement **Future Proofing** Knowledge Policy hurdles Definitional Challenges Rate Structures High Risks w/Low Risk Tolerance

WHERE TO FROM HERE?

Strategic Priorities – Performance Assurance

Strategic Priorities – Demonstration Projects

REALIZE Timeline

SF Environment

Our home. Our city. Our planet.

2020

ROCKY MOUNTAIN INSTITUTE

Martha Campbell | mcampbell@rmi.org

Transforming global energy use to create a clean, prosperous, and secure low-carbon future.