

### Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.



BLUPATH

Copyright © 2019 by BluPath Design Inc.

# Master Planning a Phased Passive House Retrofit

14TH ANNUAL NORTH AMERICAN PASSIVE HOUSE CONFERENCE December 6-7, 2019

Presenters

Laura Blau AIA, CPHC, Certified Passive House Builder BluPath Design Inc, GreenSteps LLC

Paul Thompson AIA, LEED BD+C, CPHC, NCIDQ IEI Architects



Sam Rashkin says ... 'Energy Star is not good enough' 'Partially implement full measures instead of fully implement half measures'

# problem seeking

AN ARCHITECTURAL PROGRAMMING PRIMER

5<sup>™</sup> EDITION

WILLIAM M. PEÑA STEVEN A. PARSHALL

h+k

### **Master Planning Process**

- 1. Establish Goals
- 2. Collect and Analyze Facts
- 3. Uncover and Test Concepts
- 4. Determine Needs
- 5. State the Problem

### We add this task

 Develop a Comprehensive Plan, including Phased Construction

## **Establish Goals**

- Fossil fuel free?
- Net-zero?
- Passive House principles or PH certified?
- Health issues? Indoor air quality?
- Programmatic requirements
  - Age-in-place?
  - Expanding family?
  - Income producing?
  - Limited budget?
  - Establish pro-forma?

## **Evaluate the Building**

- Blower door test
- RILEM tube test
- THERM models
- WUFI models
- Existing drawings
- What do you find during demolition?

Jug. 1.

- Structural concerns?
- Code compliant systems?

**Project Planning based on Systems and Building Science** 1. Energy Path Net-zero? Off-site renewables? 2. Electrification and metering Fossil fuel free? All electric? 3. Envelope Strategy Thick or thin window frames? One / two way vapor open? Foam / no foam? Tim McDonald and David Salamon The High-Performance Affordable Housing Design MANUAL

# Site Analysis Developing a Quasi-Quantifiable Tool

| PROJEC      | T OPPORTUNITY AND CONSTRAINT WORKSH                 | IEET                                   |                |        |
|-------------|-----------------------------------------------------|----------------------------------------|----------------|--------|
| Building A  | Address                                             | Building Description                   | Building age   |        |
|             | Street Number and Name                              | Building Description                   | Bldg Age?      | years  |
|             | City, State, ZIP                                    |                                        |                |        |
| Date        | January 1, 2010                                     |                                        |                |        |
|             |                                                     |                                        |                |        |
| General     |                                                     |                                        |                | points |
| G.1         | Climate zone                                        |                                        | Climate Zone?  |        |
| G.2         | ? Cost of acquisition                               |                                        |                |        |
| G.3         | Project budget                                      |                                        |                |        |
| G.4         | PH Certification?                                   |                                        | Certification? |        |
| G.5         | Gut rehab                                           | If gut rehab, then Yes                 | Yes or No?     | 0      |
| G.6         | Partial renovation                                  | If partial renovation, then Yes        | Yes or No?     | 0      |
| G.7         | Program requirements                                | If improves energy use, then Yes       | Yes or No?     | 0      |
| G.8         | New Addition solves problems?                       | If improves energy use, then Yes       | Yes or No?     | 0      |
| Site Const  | raints                                              |                                        |                |        |
| <b>S</b> .1 | Zoning constraints and Property line location       | If constraints, then Yes               | Yes or No?     | 1      |
| S.2         | Puilding Code restrictions                          | If restrictions, then Yes              | Yes or No?     | 1      |
| S.3         | Adjacent buildings, vegetation and obstructions     | If obstructions, then Yes              | Yes or No?     | 1      |
| S.4         | Orientation for passive solar access                | If good solar orientation, then Yes    | Yes or No?     | 0      |
| S.5         | Orientation for solar access for energy generation  | If good solar access, then Yes         | Yes or No?     | 0      |
| S.6         | Future solar access restrictions                    | If future solar restrictions, then Yes | Yes or No?     | 1      |
| S.7         | ' Storm water management, drainage, flooding        | If poor drainage, then Yes             | Yes or No?     | 1      |
| S.8         | Soil type, Wet lands, Brownfield, Sink holes, Radon | If difficult soil, then Yes            | Yes or No?     | 1      |
| Building H  | listory                                             |                                        |                | -      |
| <b>H</b> .1 | Historic designation                                | If historically designated, then Yes   | Yes or No?     | 1      |
| H.2         | Cultural significance to be preserved               | If culturally signifiant, then Yes     | Yes or No?     | 1      |
| H.3         | Architectural features to be preserved              | If has arch. features, then Yes        | Yes or No?     | 1      |
| H.4         | Recent additions that preclude optimal solutions    | If recent addition, then Yes           | Yes or No?     | 1      |
| H.5         | Recent renovations or replacements                  | If recent renovation, then Yes         | Yes or No?     | 1      |

| Building Envelope                                                 |                                           |               |    |
|-------------------------------------------------------------------|-------------------------------------------|---------------|----|
| E.1 Aesthetics                                                    | If an Ugly Duck, then Yes                 | Yes or No?    | 0  |
| E.2 Simple form                                                   | If simple form, then Yes                  | Yes or No?    | 0  |
| E.3 Complex form                                                  | If complex form, then Yes                 | Yes or No?    | 0  |
| E.4 Very complex form                                             | If very complex form, then Yes            | Yes or No?    | 0  |
| E.5 Construction type                                             |                                           | Const. Type?  | 0  |
| E.6 Roof form                                                     |                                           | Roof Form?    | 0  |
| E.7 Slab on grade foundation                                      | If slab on grade, then Yes                | Yes or No?    | 1  |
| E.8 Basement                                                      | If there is a basement, then Yes          | Yes or No?    | 0  |
| E.9 Exposed rubble foundation                                     | If rubble basement, then Yes              | Yes or No?    | 0  |
| E.10 Exposed concrete foundation                                  | If concrete basement, then Yes            | Yes or No?    | 0  |
| E.11 Moisture issues                                              | If basement is wet, then Yes              | Yes or No?    | 1  |
| E.12 Structural issues                                            | If structural problems, then Yes          | Yes or No?    | 1  |
| E.13 Opportunity for exterior insulation? EIFS, rainscreen, other | If possible exterior insulation, then Yes | Yes or No?    | 0  |
| E.14 Ease of interior insulation                                  | If easy interior insulation, then Yes     | Yes or No?    | 0  |
| Building Systems                                                  |                                           |               | _  |
| SY.1 Heating system type                                          |                                           | Furnace       | 0  |
| SY.2 Heating fuel                                                 |                                           | Natural gas   | 0  |
| SY.3 Heating system at end of useful life?                        | If system will be replaced, then Yes      | Yes or No?    | 0  |
| SY.4 Air conditioning system                                      |                                           | A/C System?   | 0  |
| SY.5 AC system at end of useful life?                             | If system be replaced, then Yes           | Yes or No?    | 0  |
| SY.6 Hot water system                                             |                                           | HW System?    | 0  |
| SY.7 Hot water fuel                                               |                                           | HW Fuel?      | 0  |
| SY.8 HWH at end of useful life?                                   | If system will be replaced, then Yes      | Yes or No?    | 0  |
| SY.9 Plumbing system materials                                    |                                           | Plumb. Mat'l? | 0  |
| SY.10 Plumbing system at end of useful life?                      | If system will be replaced, then Yes      | Yes or No?    | 0  |
| SY.11 Plumbing access                                             | If easily accessible, then Yes            | Yes or No?    | 0  |
| SY.12 Plumbing location                                           | If plumbing areas are close, then Yes     | Yes or No?    | 0  |
| SY.13 Plumbing fixture efficiency                                 | If fixtures are WaterSense, then Yes      | Yes or No?    | 0  |
| SY.14 Electrical service size                                     |                                           | Service Size? | 0  |
| SY.15 Electrical system condition                                 |                                           | Condition?    | 0  |
| SY.16 LED light fixtures                                          | If LED fixtures, then Yes                 | Yes or No?    | 0  |
| SY.17 CFL or incandescent light fixtures                          | If CFL or incandescent fixtures, then Yes | Yes or No?    | 0  |
| SY.18 Appliance efficiency                                        | It Energy Star appliances, then Yes       | Yes or No?    | 0  |
| SY.19 Replace appliances?                                         | It appliances to be replaced, then Yes    | Yes or No?    | 0  |
|                                                                   | Score                                     | 14            | 14 |
|                                                                   | CHALLENGING CANDIDA                       | IE            |    |

#### SITE OPPORTUNITY AND CONSTRAINT WORKSHEET

| Building Address |                       | Building Description             | Building age |       |
|------------------|-----------------------|----------------------------------|--------------|-------|
|                  | 1722 Pine St.         | 4 story, 4 unit historic rowhome | 170          | years |
|                  | Philadelphia PA 19103 |                                  |              | -     |
| Date             | July 1, 2016          |                                  |              |       |

#### General

- G.1 Climate zone
- G.2 Cost of acquisition
- G.3 Project budget
- G.4 PH Certification?
- G.5 Gut rehab
- G.6 Partial renovation
- G.7 Program requirements
- G.8 New Addition solves problems?

#### Site Constraints

- S.1 Zoning constraints and Property line location
- S.2 Building Code restrictions
- S.3 Adjacent buildings, vegetation and obstructions
- S.4 Orientation for passive solar access
- S.5 Orientation for solar access for energy generation
- S.6 Future solar access restrictions
- S.7 Storm water management, drainage, flooding
- S.8 Soil type, Wet lands, Brownfield, Sink holes, Radon

#### **Building History**

- H.1 Historic designation
- H.2 Cultural significance to be preserved
- H.3 Architectural features to be preserved
- H.4 Recent additions that preclude optimal solutions
- H.5 Recent renovations or replacements

| If gut rehab, then Yes          |
|---------------------------------|
| If partial renovation, then Yes |
| If improves energy use, then Ye |

If improves energy use, then Yes If improves energy use, then Yes

If constraints, then Yes If restrictions, then Yes If obstructions, then Yes If good solar orientation, then Yes If good solar access, then Yes If future solar restrictions, then Yes If poor drainage, then Yes If difficult soil, then Yes

If historically designated, then Yes If culturally signifiant, then Yes If has arch. features, then Yes If recent addition, then Yes If recent renovation, then Yes

|               | points |
|---------------|--------|
| Zone 4A Phila |        |
| \$450,000     |        |
| \$1,300,000   |        |
| EnerPHit      |        |
| Ŷ             | 3      |
| Ý             | 2      |
| Ý             | 1      |
| N             | 0      |

| Y | (   |
|---|-----|
| Ý | C   |
| Ŷ | C   |
| N | C   |
| Y | - 2 |
| Y | C   |
| Ý | 0   |
| N | 1   |
|   |     |

| Y | 0 |
|---|---|
| Y | 0 |
| Y | 0 |
| N | 1 |
| N | 1 |

#### **Building Envelope**

| E.1        | Aesthetics                                                   | If an Ugly Duck, then Yes                 | N            | 0  |
|------------|--------------------------------------------------------------|-------------------------------------------|--------------|----|
| E.2        | Simple form                                                  | If simple form, then Yes                  | Y            | З  |
| E.3        | Complex form                                                 | If complex form, then Yes                 | N            | 0  |
| E.4        | Very complex form                                            | If very complex form, then Yes            | N            | 0  |
| E.5        | Construction type                                            |                                           | Mixed        | 0  |
| E.6        | Roof form                                                    |                                           | Flat         | 0  |
| E.7        | Slab on grade foundation                                     | If slab on grade, then Yes                | N            | 1  |
| E.8        | Basement                                                     | If there is a basement, then Yes          | Y            | 2  |
| E.9        | Exposed rubble foundation                                    | If rubble basement, then Yes              | Y            | 1  |
| E.10       | Exposed concrete foundation                                  | If concrete basement, then Yes            | N            | 0  |
| E.11       | Moisture issues                                              | If basement is wet, then Yes              | Y            | -1 |
| E.12       | Structural issues                                            | If structural problems, then Yes          | N            | 1  |
| E.13       | Opportunity for exterior insulation? EIFS, rainscreen, other | If possible exterior insulation, then Yes | Y            | 5  |
| E.14       | Ease of interior insulation                                  | If easy interior insulation, then Yes     | Y            | 3  |
| Building S | ystems                                                       |                                           |              |    |
| SY.1       | Heating system type                                          |                                           | Boiler       | 0  |
| SY.2       | Heating fuel                                                 |                                           | Natural gas  | 0  |
| SY.3       | Heating system at end of useful life?                        | If system will be replaced, then Yes      | Y            | З  |
| SY.4       | Air conditioning system                                      |                                           | Window Units | 0  |
| SY.5       | AC system at end of useful life?                             | If system be replaced, then Yes           | Y            | 3  |
| SY.6       | Hot water system                                             |                                           | Tank         | 0  |
| SY.7       | Hot water fuel                                               |                                           | Natural Gas  | 0  |
| SY.8       | HWH at end of useful life?                                   | If system will be replaced, then Yes      | N            | 0  |
| SY.9       | Plumbing system materials                                    |                                           | Copper       | 0  |
| SY.10      | Plumbing system at end of useful life?                       | If system will be replaced, then Yes      | N            | 0  |
| SY.11      | Plumbing access                                              | If easily accessible, then Yes            | N            | 0  |
| SY.12      | Plumbing location                                            | If plumbing areas are close, then Yes     | Y            | 1  |
| SY.13      | Plumbing fixture efficiency                                  | If fixtures are WaterSense, then Yes      | N            | 0  |
| SY.14      | Electrical service size                                      |                                           | 200A         | 0  |
| SY.15      | Electrical system condition                                  |                                           | Mixed        | 0  |
| SY.16      | LED light fixtures                                           | It LED fixtures, then Yes                 | N            | 0  |
| SY.17      | CFL or incandescent light fixtures                           | It CFL or incondescent fixtures, then Yes | Ŷ            |    |
| SY.18      | Appliance efficiency                                         | It Energy Star appliances, then Yes       | N            | 0  |
| SY.19      | Keplace appliances?                                          | t applicates to some praced, them Yes     |              | 2  |
|            |                                                              | Score                                     | 36           | 36 |

LIKELY CANDIDATE 

# Developing a Comprehensive Retrofit Plan

## **EnerPHit Retrofit Plan (ERP)**

- Describes the overall concept for step-by-step, phased improvements to a building.
- Phased improvements are documented as 'variants' in a single PHPP version 9.7 (imperial units).
- Input Existing Conditions, Schedule and Cost for each Retrofit Phase in Variants page.
- Input phased / future renewable primary energy.
- Outputs show the improving energy efficiency for each phase, including the primary energy (PER) and economic results / feasibility of each proposed improvement.

|                                    | _                                           | Active     |          |                                     |                                    |                                      |                             |   |
|------------------------------------|---------------------------------------------|------------|----------|-------------------------------------|------------------------------------|--------------------------------------|-----------------------------|---|
|                                    | Select the active<br>variant here<br>>>>>>> | 1-Existing | Existing | Windows +<br>heat recovery<br>vent. | Basement<br>ceiling + roof<br>+ PV | External walls<br>+ Entrance<br>door | Heatpump +<br>solar thermal |   |
|                                    | Units                                       | 1          | 1        | 2                                   | 3                                  | 4                                    | 5                           | T |
| Heating demand                     | kWh/(m²a)                                   | 246,7      | 279,7    | 246,7                               | 189,0                              | 20,6                                 | 20,6                        | Т |
| Heating load                       | W/m²                                        | 100,0      | 129,2    | 100,0                               | 79,8                               | 15,6                                 | 15,6                        | T |
| Cooling & dehum. demand            | kWh/(m²a)                                   | 2,3        | 6,2      | 2,3                                 | 1,1                                | 0,3                                  | 0,1                         | T |
| Cooling load                       | W/m²                                        | 18,2       | 31,9     | 18,2                                | 12,8                               | 5,8                                  | 4,0                         | T |
| Frequency of overheating (> 25 °C) | %                                           |            |          |                                     |                                    |                                      |                             | Т |
| PER demand                         | kWh/(m²a)                                   | 770,4      | 855,8    | 770,4                               | 624,9                              | 203,0                                | 36,7                        | T |
| EnerPHit Plus?                     | yes / no                                    | no         | no       | no                                  | no                                 | no                                   | yes                         | T |

### PHPP 'Variant' worksheet shows the results for each phase

| d-Windows in first step                                                                                                              | Frame list               |                                         |                          |                         | d-Windows in first step 09ud-EnerP  | South |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|--------------------------|-------------------------|-------------------------------------|-------|
| Active variant:<br>g-Value:0,52<br>U-Value: 0,63 W/(m <sup>4</sup> K)                                                                | 09ud-EnerPHit<br>window  | 93ud-Double<br>glazing 4/12mm air<br>/4 | 09ud-EnerPHit<br>window  | 09ud-EnerPHit<br>window | d-Windows in first step 09ud-EnerP  | South |
| U-Value [W/(m <sup>2</sup> K]: left: 0,9 right: 0,9 bottom: 0,9 top: 0,9<br>Width [m]: left: 0,12 right: 0,12 bottom: 0,12 top: 0,12 | 09ud-EnerPHit<br>window  | 53ud-EXISTING:<br>timber 45 mm          | 09ud-EnerPHit<br>window  | 09ud-EnerPHit<br>window | d-Windows in first step 09ud-EnerP  | South |
| e-Windows in later step                                                                                                              | Frame list               |                                         |                          |                         | e-Windows in later sten 93ud-Double | North |
| Active variant:                                                                                                                      | 93ud-Double              | 93ud-Double                             | 93ud-Double              | Murt EnerDuit           | e-windows in later step soud-boubi  | NOTUT |
| g-Value:0,77<br>U-Value: 2.9 W/(m <sup>3</sup> K)                                                                                    | glazing 4/12mm<br>air /4 | glazing 4/12mm air                      | glazing 4/12mm air<br>/4 | window                  | e-Windows in later step 93ud-Double | West  |
| U-Value [W/(m <sup>#</sup> K]: left: 2,5 right: 2,5 bottom: 2,5 top: 2,5                                                             | 53ud-EXISTING:           | 53ud-EXISTING:                          | 53ud-EXISTING:           | 09ud-EnerPHit           | e-Windows in later sten 93ud-Double | North |
| width [m]: ien: 0,14 right: 0,14 bottom: 0,14 top: 0,14                                                                              | timber 45 mm             | under 45 mm                             | timber 45 mm             | window                  |                                     | NOTUL |

PHPP Windows 'Variant' worksheet for different specifications

### Energy demand and generation over the retrofit steps



ERP title page shows the results of each Retrofit phase.

# Owner's Project Requirements A Case Study

# 1722 Pine Street, Philadelphia PA

### **BUILDING DESCRIPTION**

Built 1845, Major renovation 1922 (77 yrs), 2018 (96 yrs) 4 floor with basement; 4 unit townhouse Lot: 20ft x 90ft = 1,800sf Open Area: 331sf

| Basement:              | 1,225sf      | Unit A, Common storage           |
|------------------------|--------------|----------------------------------|
| 1 <sup>st</sup> Floor: | 1,469sf      | Unit A, Unit A yard              |
| 2 <sup>nd</sup> Floor: | 1,499sf      | Unit B                           |
| 3 <sup>rd</sup> Floor: | 1,499sf      | Unit C, Unit D                   |
| 4 <sup>th</sup> Floor: | <u>801sf</u> | Unit D, Unit D deck, Common deck |
| Total:                 | 6,493sf      |                                  |

Unit A: 3 BR, 3 Bath Unit B: 2 BR, 2 Bath Unit C: 2 BR, 2 Bath Unit D: 2 BR, 1 Bath, Deck

## MAJOR WORK

Phase 1

Underpin basement, insulated slab, perimeter drain

All new windows

New MEP, ventilation, fire sprinkler system

Phase 2

New exterior insulation at rear

New fire escape

Phase 3

Renewable energy + growing carbon

Basement,1<sup>st</sup> and 2<sup>nd</sup> Floor: Gut rehab 3<sup>rd</sup> Floor: Partial rehab - Add bathroom 4<sup>th</sup> Floor: Major rehab - New kitchen, New bathroom

## OWNER PROJECT REQUIREMENTS

- 1. Renovate and modernize a traditionally efficient house form.
- 2. Get rid of all natural gas and make the building allelectric.
- 3. Maintain the building's historical character and support a wonderful neighborhood.
- 4. Demonstrate that renovating existing building stock can meet sustainability goals AND create beautiful, livable cities while retaining the embodied carbon.
- 5. Set a precedent for renovating historic rowhomes.
- 6. Engage the municipal approvals process to set precedent for future projects in Philadelphia.

## OWNER PROJECT REQUIREMENTS

- 7. Adhere to building science based construction.
- 8. Meet Passive House standard by incorporating PH principles and achieve Certification.
- 9. Lead by example and set sustainability goals.
- 10. Make zero-energy ready design decisions.
- 11. Meet personal financial goals by achieving acceptable pro-forma results.
- 12. Live in a Passive House!





ALBERT, RIGHTER & TITTMANN ARCHITECTS, INC.



Whale oil lamps



## Get Rid of the Gas!!

**(**);

2nd Floor

Smart SHIELD

ENERGICU

6

and a second and a second as



Rittenhouse Square





Pine Street façade: Contributor to the culture of historic Philadelphia.



Waverly Street elevations: Car parkers, dog walkers and trash pickers.

## The Building Science Story





## RILEM (AKA Karsten) tube moisture absorption test



Pine Street Wall Section post Renovation





**Pine Street Facade** - WUFI, Hygrothermal Analysis Option 1: Add 5.5" Cellulose with smart vapor retarder Result: Acceptable mold risk (R19)



Pine Street Facade – Moisture Absorption Test Result: High absorption rate



Waverly St Wall Section - Existing Conditions





Waverly Street East Facade - WUFI, Hygrothermal Analysis Existing Condition Result: Unacceptable mold risk



Interior (after pointing) 1ST FLOOR WEST WALL Exterior



Waverly Street East Facade - WUFI, Hygrothermal Analysis Option 2: Add interior partition with 4" cellulose with smart vapor retarder Result: Unacceptable mold risk



WUFI® Pro 5.1; Project: Waverly St East facade - main floor SE&W walls poor brick.W5P; Pine Street Renovation - Pine street facade, / Case 6: EIFI & WRB 2 wythe rear brick 4\* Cellulose NO Intello .5 in GWB; Date: 6

Waverly Street East Facade - WUFI, Hygrothermal Analysis Option 4: Add drainage plane system EIFS with 4" EPS and 4" Cellulose Result: Acceptable mold risk

EXTERIOR

Waverly S

FIES

Existing

Waverly St Wall Section Option 4



#### Wall Area Take-off for PHPP model: Apartments 1 thru 4

Includes silhouette of neighboring building for solar shading input

### Pine Street PHPP – Exterior Elevations w/ Wall Types 30 different assemblies for walls, floors and roof



Pine Street PHPP Verification Sheet With and without Cork Exterior Insulating System

Ready to Harvest Carbon and Reduce Carbon Emissions

## Be the Snowflake that becomes the Snowball that starts the Avalanche

## Why Zero: Path to Better Future

ENERGY Energy Efficiency & Renewable Energy



Image Source: http://www.santamonicapropertyblog.com/more-green-building-codes-in-january/

25 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market



Can you find the Passive House?

# Conclusion

- 1. Renovations take planning
- 2. Building science is an active part of the process
- 3. Values, Mission and Vision are the alpha and omega

## **Next Steps**

- 1. Finish the f@#\$%&g project
- 2. Get it rented
- 3. Get the certification
- 4. Share lessons learned
- 5. Install solar panels
- 6. Start growing carbon!

We are stardust, we are golden ....

Joni Mitchell, 1970