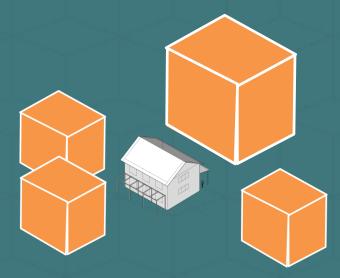
SUCCESSFULLY UTILIZING THE WUFI PASSIVE DYNAMIC SHADING TOOL

PASSIVE HOUSE ALLIANCE UNITED STATES

ANDRES PINZON, PhD 14th NAPHC Washington - Dec. 7, 2019


WUFI Passive Dynamic Shading Tool

- Method developed to compute monthly shading factors per window.
- It takes into account all shading interactions and is based on a geometrical representation of all elements that shade transparent building components.
- It is implemented in the PHIUS Certification software WUFI and applied to certified passive projects.

Shading Simulation Techniques

- Shading simulation techniques can precisely address the influence of solar irradiation on building surfaces, and these are fundamental to meet environmental targets.
- Self-shading: geometry depends from building design.
- Site shading: geometry depends on context variables.

Outline

- 1. 'Site Shading' in the PHIUS+ Certification Program.
- 2. 'Site Shading' representation.
- 3. Method for using 'sky-dome images' in compliance with the WUFI Passive Shading.
- 4. Comparative test between 'building geometry' and 'updated pathfinder protocol'.
- 5. Conclusions.

How 'Site Shading' is accounted in the PHIUS+ Building Certification Program ?

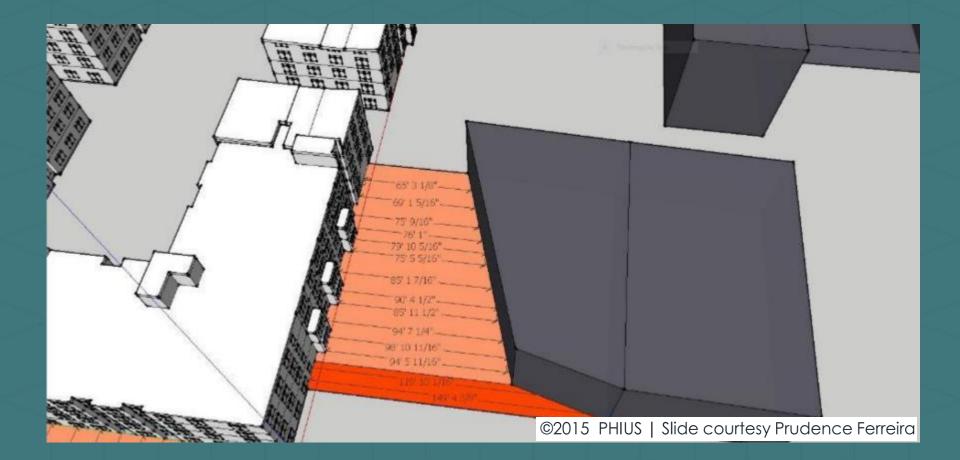
Shading Protocol in WUFI Passive

Shading Elements Reveals			
(even)			
Reveals (uneven)			
Landscape Obstructions	'Sit	e Sha	ding'
Overhangs		a pase	
Other shading fractions		ouildin	g .
Sunscreen Devices			

Variations with 'Shading Methodologies'

Shading Elements	Previous Methodology	New Methodology			
Reveals (even)	Numeric entries	Numeric entries modify imported			
Reveals (uneven)	Calculator mulled windows – 'L' shapes	geometry for calculation			
Landscape Obstructions		Calculated from			
Overhangs	Calculated from	imported geometry			
Other shading fractions	numeric entries	Calculated from			
Sunscreen Devices		numeric entries			

WUFI entries from Certificate Criteria

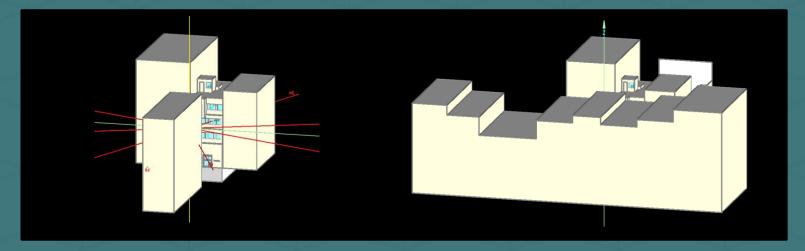

Shading Elements	PHIUS+ 2015	PHIUS+ 2018
Height of Landscape Obstruction (ft.)	Yes	N/A
Distance of Landscape Obstruction (ft.)	Yes	N/A
Other shading (winter) fraction of solar exposure	Yes	Yes
Other shading summer fraction of solar exposure	Yes	Yes

New methodology – Site Shading possibilities

Shading Elements	New Methodology	
Reveals (even)	Numeric entries modify imported	
Reveals (uneven)	geometry for Calculation	
Landscape Obstructions	How to make a more precise	Effective modeling for
Overhangs	geometrical representation?	calculation in WUFI
Other shading fractions	How an imported geometry can	Calculations of seasonal
Sunscreen Devices	represent these fractions?	shading within WUFI

How to effectively utilize the WUFI dynamic shading tool through 'site modeling' representation ?

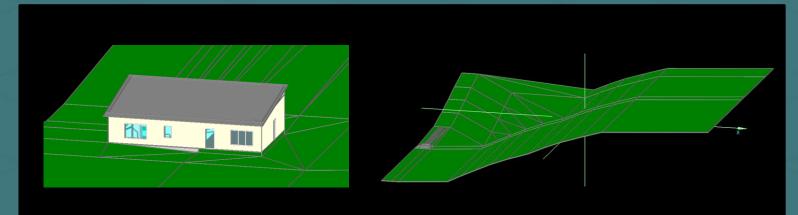
PHIUS+ 2015 Height and Distance of Landscape Obstruction



PHIUS+ 2018

Adjacent Buildings

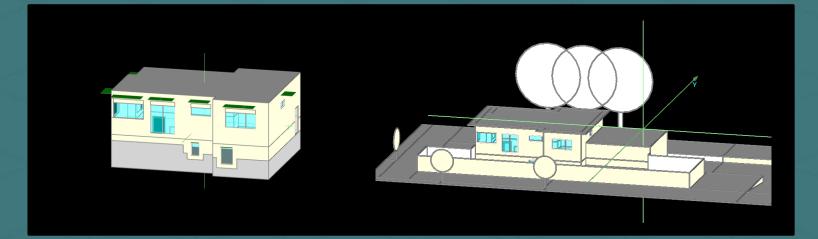
1659 - ABC No Rio



PHIUS+ 2018

Topography

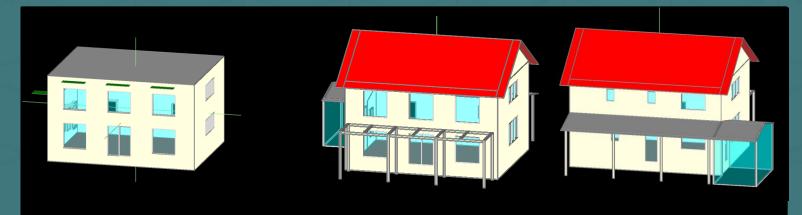
1570 – Thompson House

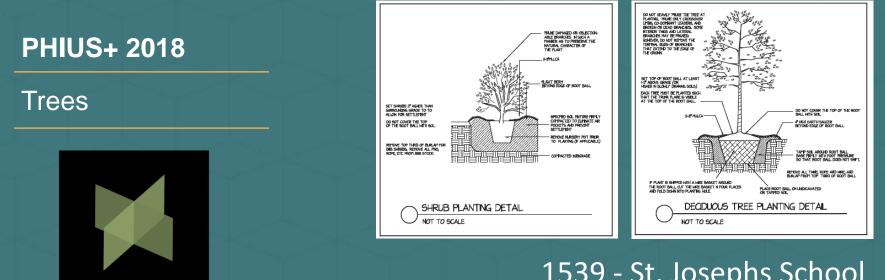


PHIUS+ 2018

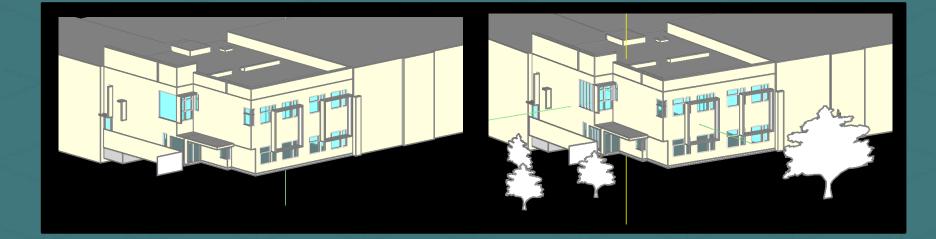
Fences - Light wells

Emery House




PHIUS+ 2018

Canopies - Sunrooms



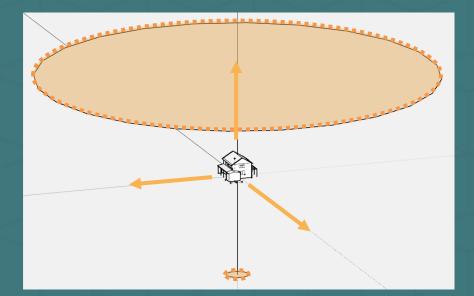
Karpiak House

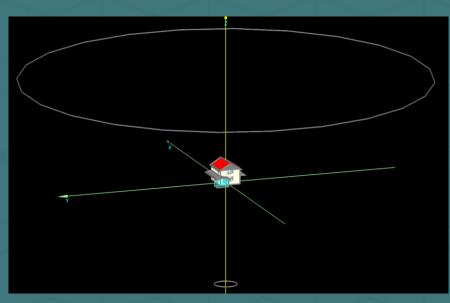
1539 - St. Josephs School

PHIUS+ 2018

Crown Shape

1567 - Whisper House



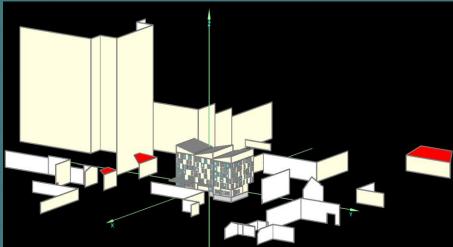

Landscape Obstructions - Centered Geometry

Project's geometrical center at ground level on Axis X,Y,Z (0,0,0)

In SketchUp, create two 'circular fake components'

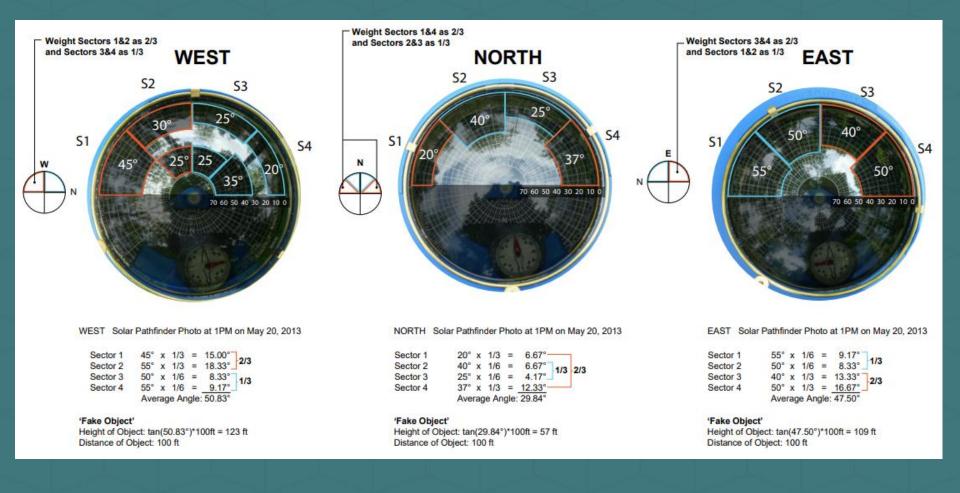
In WUFI, assign 'fake components' as 'Openings' (type).

Landscape Obstructions - Simplified Geometry


Simple surfaces or volumes of 'adjacent' obstructions.

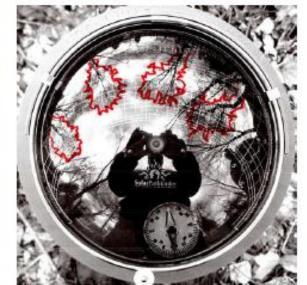
In SketchUp, delete windows of adjacent buildings.

In WUFI, import 'simple contours' and 'volumes'.


FS – The Beacon

Landscape Obstructions – Angle Estimator

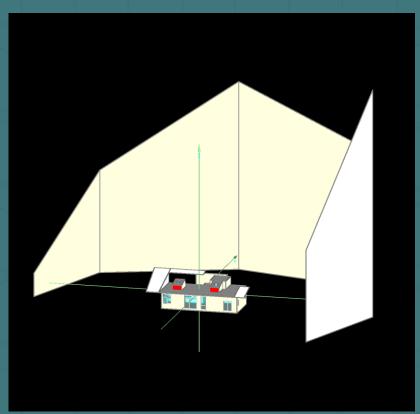
PHIUS+ 2015 Pathfinder Protocol North, East, West Facades



Other shading (winter) fraction – Sun Estimator

PHIUS+ 2015 Pathfinder Protocol South Façade / Winter & summer fractions

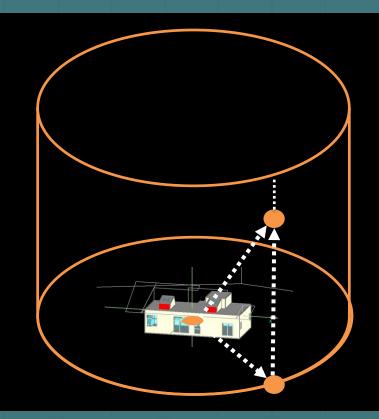
SOUTH



SOUTH Solar Pathfinder Photo at 11AM on March 27, 2013

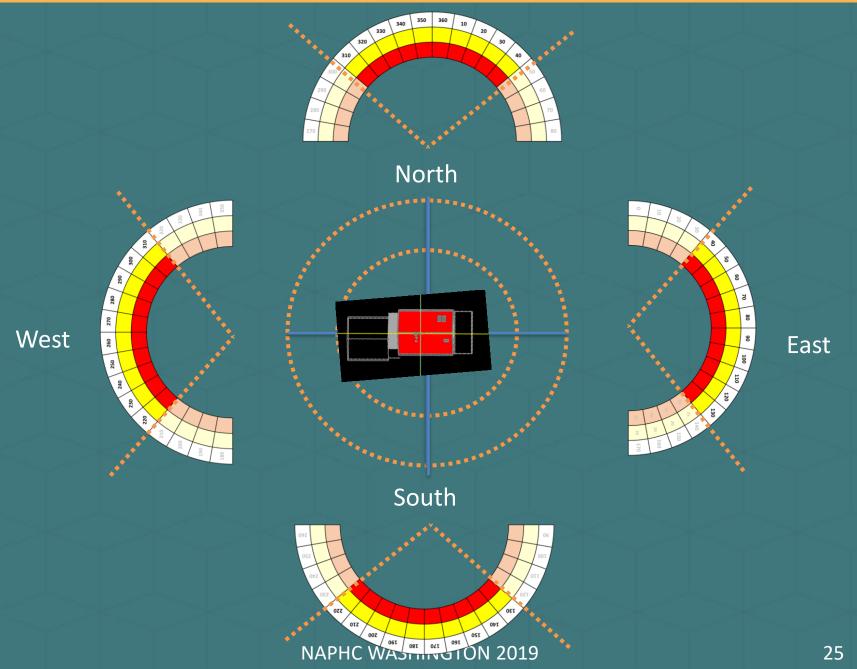
			1		8		9		0	1	1		12		F		2		3	1 1	4		5		7	Ste
DEC				Ú.	3	4	1011		X	3	0	0	1000	11	2	7	Б.	1111	. 16	3.	.0.					64
AN.				0:	3	4	10.00	1010	1	3	0	8	12.1	0	1	3	6	117.2	4	3						- 84
OV.			0.	2	3	4	11.8		7	7	1		10.33	7	7	7	8.	11.1	.4	0.	2	0				0
63			0.	3	3	4	123	100	7	7	7	10	100	111	7	7	6	1000	-4.	- 3	2	0				- 92
CT.		11	2	2	3	14	1013		. 10		1	8.	100.00	155	7		191.22	123.0	.4	3	2	-2				81
AR		80.5	2.	2	3	4	2111	100	6	3	7	7	10.0	1010	1	6	Б.	6213	4	3	2	-2	1			64
EP .		1000		2	- 3	4	1000		6	- 7	- 7	2	1530	10.52	7	6	101	1000	. 6	1	2	2	1			90
215		1010		2	3	4	5		6	. 3	7	7.	7	7	7	. 6	6	267.6	- 4	3	2	.2	1			9
102		10.52	10.00	2	3	-4	5	6.	6	7	- 7	7	2	7	7	6	12.11	1012	- 4	3.	2.	- 2	. 1.			
AY.		10.15		10.00	- 0.1	4	5	- 61	6.	- 7.	- 7	- 2	7	- 2.	7	. 6	10.1	111	4	3	- 2	2	11			.9
AY UL IN		1003		10.00	3	. 4	5		Б.	7	2	- 2	7	7	. 2.	. 6	10.75	11.2	.4	3	2	2	л.			9
19	10.00	1000	2	2	3	- 4	5	6	6	6	7	7	1	2	6	6	15.6	1771	-4	3	2	- 2	-1	1		90
																									Wither Surgers	84

Other Shading Fractions – New alternatives


1636 – Maple Corner House

How to replicate sky-dome images to be used in conjunction with the WUFI Passive Shading tool ?

Horizon Geometry - shading angles' component


PHIUS updates


Width (W) Height (H) Elevation Angle (ß)

Dual Pathfinder Protocol – Tracking shading angles

Dual Pathfinder Protocol - Field Extension

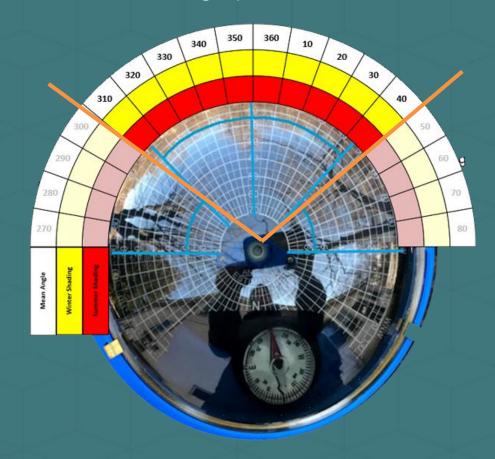
Radius Multiplier	10
Length of Bldg	38

380 ft. (38 ft. x 10)

'Length of Building': longest side. Combined with radius multiplier (x10) creates radius for 'Horizon Geometry'

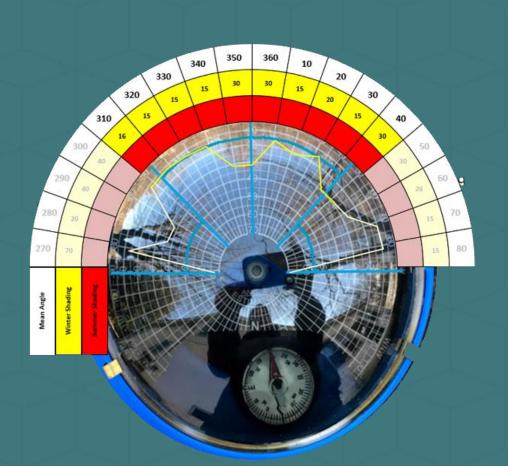
Tracked orientation angles per direction

	NODTU	
	NORTH	
Degrees	Winter	Summer
270		
280		
290		
300		
310		
320		
330		
340		
350		
360		
10		
20		
30		
40		
50		
60		
70		
80		
90		



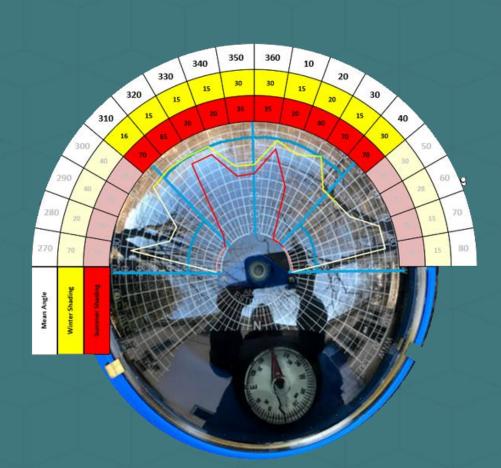
White ring

Graph and Sky-dome image alignment

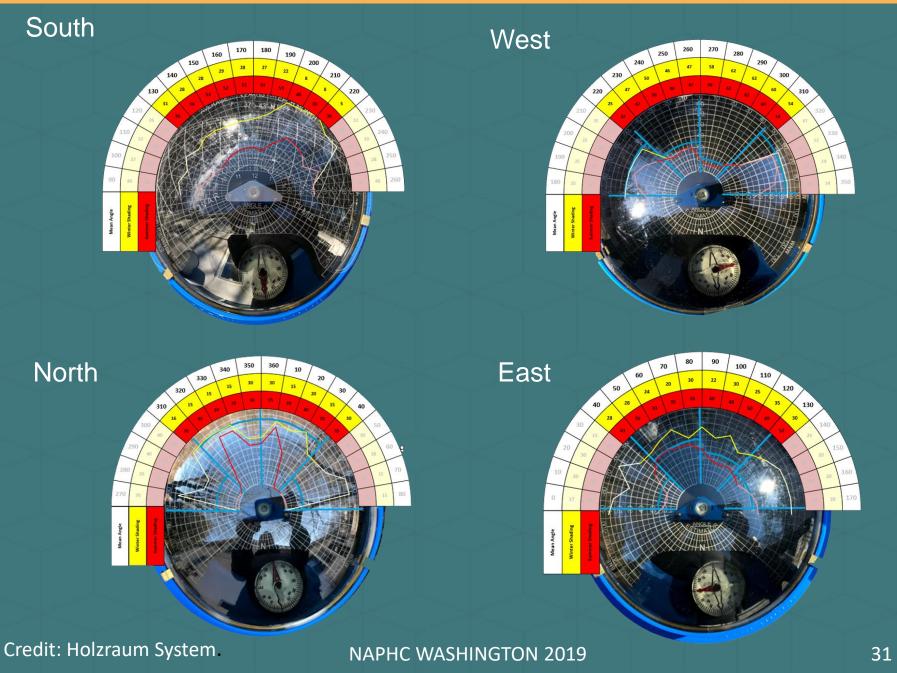

	NORTH	
Degrees	Winter	Summer
270		
280		
290		
300		
310		
320		
330		
340		
350		
360		
10		
20		
30		
40		
50		
60		
70		
80		
90		

100° range per orientation.

Tracing Winter Shading Angles


	NORTH	
Degrees	Winter	Summer
270	70	
280	20	
290	40	
300	40	
310	16	
320	15	
330	15	
340	15	
350	30	
360	30	
10	15	
20	20	
30	15	
40	30	
50	30	
60	28	
70	15	
80	15	
90	70	

Yellow ring and line - Coniferous


Tracing Summer Shading Angles

NORTH									
Degrees	Winter	Summer							
270	70	70							
280	20	70							
290	40	70							
300	40	70							
310	16	70							
320	15	65							
330	15	20							
340	15	20							
350	30	36							
360	30	35							
10	15	20							
20	20	40							
30	15	70							
40	30	70							
50	30	70							
60	28	70							
70	15	70							
80	15	70							
90	70	70							

Red ring and line – deciduous

Summer and winter obstruction lines

Shading Summary

Ent Calc

									.				
1	2	3	5						finder				
,e	Hc .al						1711		nean angle			A. 1/5/	
ORIENTATI	DISTANCE		GHT		RTH	SOUTH		EAST		WEST		AVERAGE	
ON		WINTER	SUMMER	WINTER	SUMMER	WINTER	SUMMER	WINTER	SUMMER	WINTER	SUMMER	WINTER	SUMMER
0	380	219.39	266.08	30	35							30	35
10	380	101.82	138.31	15	20							15	20
20	380	138.31	318.86	20	40							20	40
30	380	101.82	1044.04	15	70							15	70
40	380	210.64	574.12	30	70			28	43			29	56.5
50	380	202.05	266.08					28	35			28	35
60	380	169.19	246.77					24	33			24	33
70	380	138.31	266.08					20	35			20	35
80	380	219.39	266.08					30	35			30	35
90	380	153.53	318.86					22	40			22	40
100	380	219.39	422.03					30	48			30	48
110	380	177.20	452.87					25	50			25	50
120	380	266.08	437.14					35	49			35	49
130	380	223.84	523.03			31	56	30	52			30.5	54
140	380	202.05	563.37			28	56					28	56
150	380	202.05	504.28			28	53					28	53
160	380	210.64	486.38			29	52					29	52
170	380	202.05	469.26			28	51					28	51
180	380	193.62	469.26			27	51					27	51
190	380	153.53	504.28			22	53					22	53
200	380	53.41	380.00			8	45					8	45
210	380	53.41	266.08			8	35					8	35
220	380	101.82	307.72			5	36			25	42	15	39
230	380	407.50	407.50							47	47	47	47
240	380	452.87	452.87							50	50	50	50
250	380	393.50	393.50							46	46	46	46
260	380	407.50	407.50							47	47	47	47
270	380	608.13	608.13							58	58	58	58
280	380	714.68	714.68							62	62	62	62
290	380	714.68	714.68							62	62	62	62
300	380	658.18	658.18							60	60	60	60
310	380	266.08	714.68	16	70					54	54	35	62
320	380	101.82	814.91	15	65							15	65
330	380	101.82	138.31	15	20							15	20
340	380	101.82	138.31	15	20							15	20

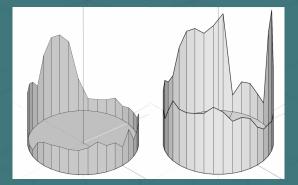
Geometry Generation – Solar Pathfinder Extension

0	380	219.3931	0	380	266.08
10	380	101.8207	10	380	138.31
20	380	138.3087	20	380	318.86
30	380	101.8207	30	380	1044.04
40	380	210.6374	40	380	574.12
50	380	202.0496	50	380	266.08
60	380	169.1869	60	380	246.77
70	380	138.3087	70	380	266.08
80	380	219.3931	80	380	266.08
90	380	153.53	90	380	318.86
100	380	219.3931	100	380	422.03
110	380	177.1969	110	380	452.87
120	380	266.0789	120	380	437.14
130	380	223.8371	130	380	523.03
140	380	202.0496	140	380	563.37
150	380	202.0496	150	380	504.28
160	380	210.6374	160	380	486.38
170	380	202.0496	170	380	469.26
180	380	193.6197	180	380	469.26
190	380	153.53	190	380	504.28
200	380	53.40552	200	380	380.00
210	380	53.40552	210	380	266.08
220	380	101.8207	220	380	307.72
230	380	407.5001	230	380	407.50
240	380	452.8664	240	380	452.87
250	380	393.5015	250	380	393.50
260	380	407.5001	260	380	407.50
270	380	608.1271	270	380	608.13
280	380	714.6761	280	380	714.68
290	380	714.6761	290	380	714.68
300	380	658.1793	300	380	658.18
310	380	266.0789	310	380	714.68
320	380	101.8207	320	380	814.91
330	380	101.8207	330	380	138.31
340	380	101.8207	340	380	138.31
350	380	219.3931	350	380	276.09

S

W

Solar Pathfinder

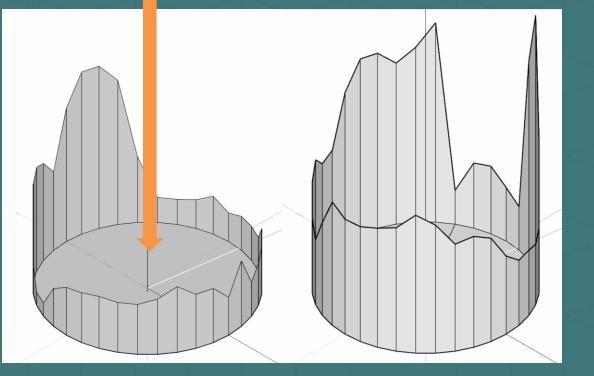

C.

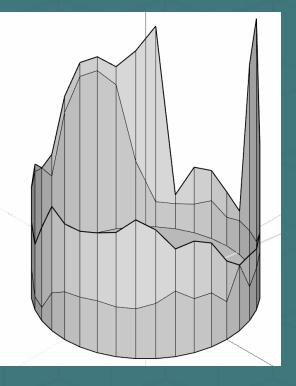
Takes in a csv file and converts it into geometry

Developed by:

Skylar Swinford Energy & Enclosure Consultant

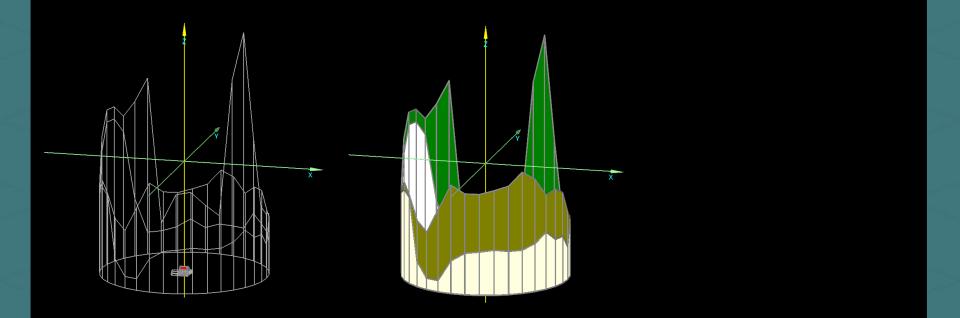
Compatible with SketchUp 2018-19



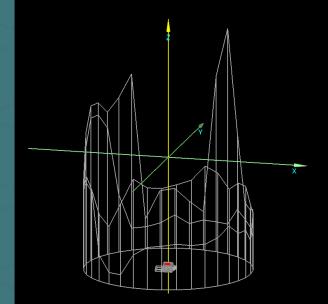

S

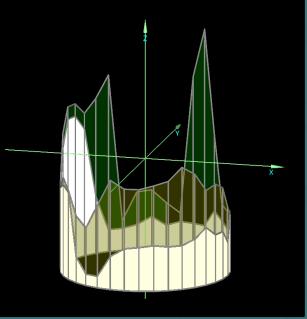
W

Assigning WUFI properties and combined horizons



WINTER OUTER AIR Inner and Outer Sides


SUMMER OUTER AIR Inner Side GROUND Outer Side

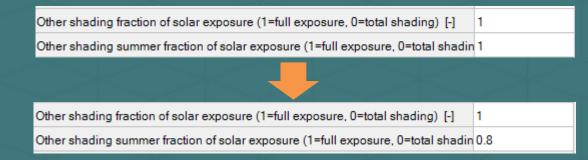

Summer Shading Test

Heating demand:	7.17 kBtu/ft²yr
Cooling demand:	2.46 kBtu/ft²yr
Heating load:	4.6 Btu/hr ft ²
Cooling load:	1.78 Btu/hr ft ²

Winter Shading Test

Heating demand:	5.82 kBtu/ft ² yr
Cooling demand:	2.9 kBtu/ft²yr
Heating load:	4.3 Btu/hr ft ²
Cooling load:	1.93 Btu/hr ft ²

Unified Case for Precertification

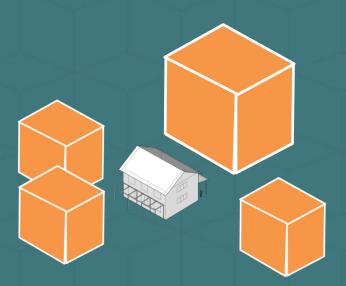

Heating demand:	7.17 kBtu/ft²yr		
Cooling demand:	2.46 kBtu/ft²yr		
Heating load:	4.6 Btu/hr ft ²		
Cooling load:	1.78 Btu/hr ft ²		

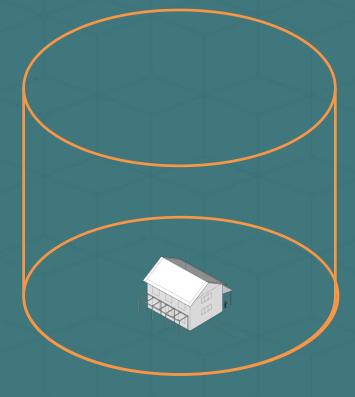
Heating demand:	5.82 kBtu/ft²yr			
Cooling demand:	2.9 kBtu/ft²yr			
Heating load:	4.3 Btu/hr ft ²			
Cooling load:	1.93 Btu/hr ft ²			

Summer Shading Test

Winter Shading Test

Winter Shading Test + Summer Red Factor

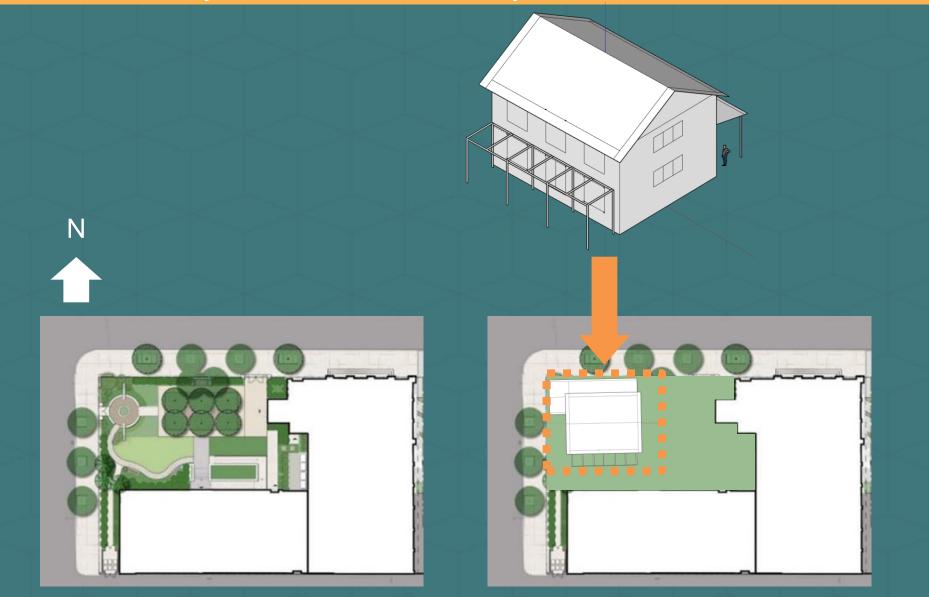

5.82 kBtu/ft²yr		
2.47 kBtu/ft²yr		
4.3 Btu/hr ft ²		
1.77 Btu/hr ft ²		


How much 'site context' should be included in the WUFI model ?

Comparison of Site Shading Methods

2D - 3D Volumes

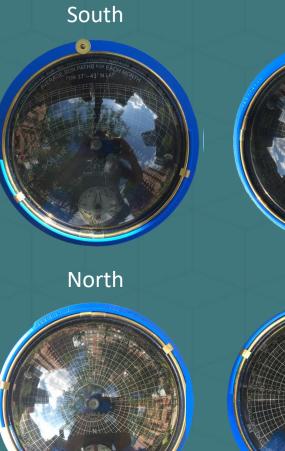
Horizon Geometry


Sensitivity Test – Case Study - Context

NAPHC WASHINGTON 2019

Ν

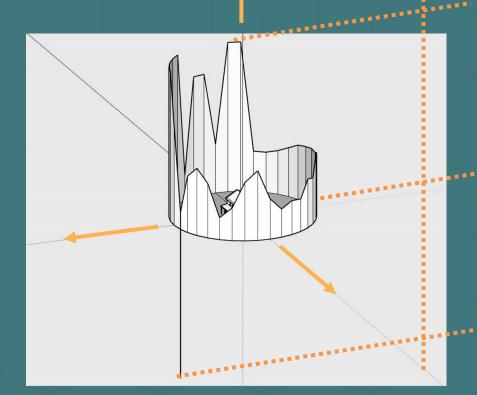
Sensitivity Test – Case Study



Input for Site Shading

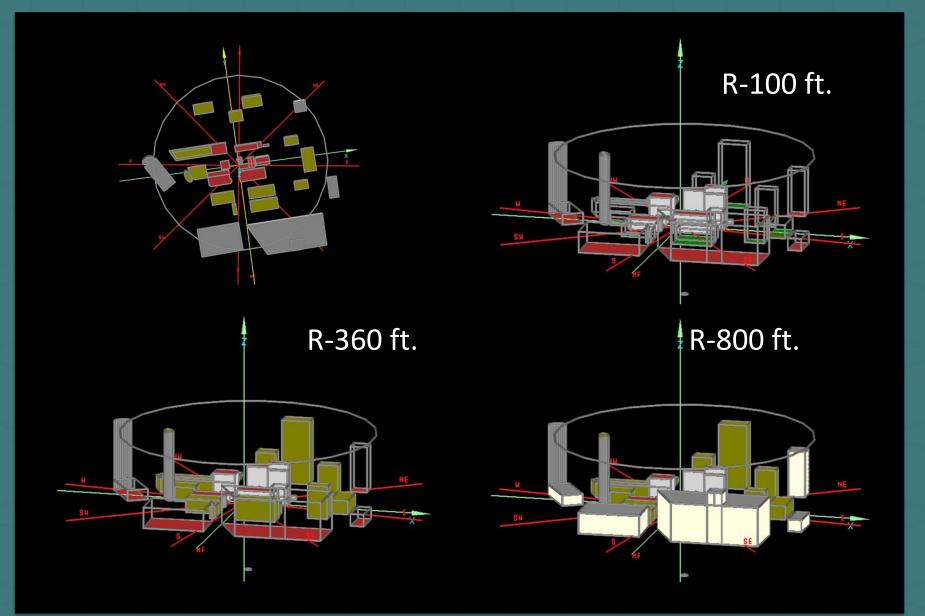
2D - 3D Volumes

Horizon Geometry

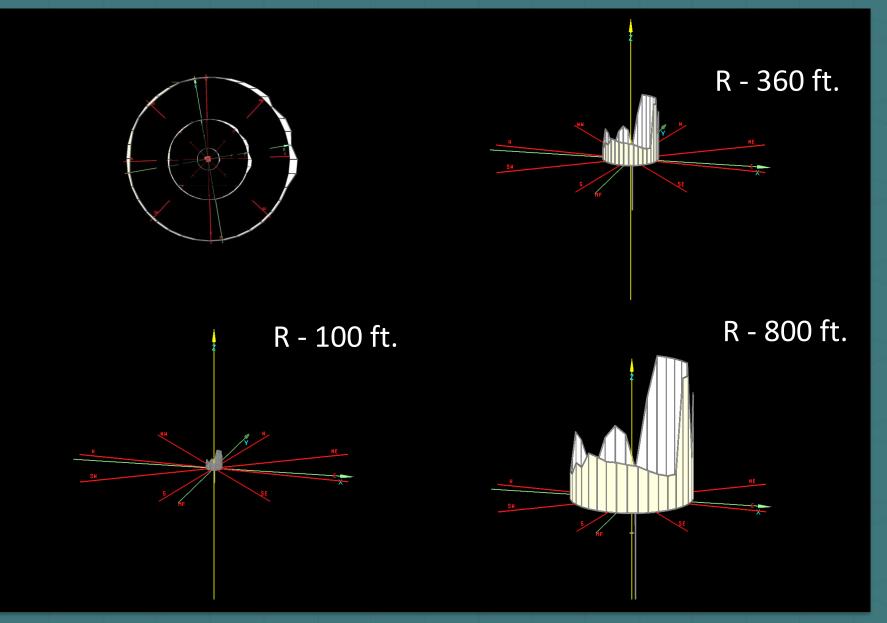

East

West

Modeled 'Site Shading' Comparison

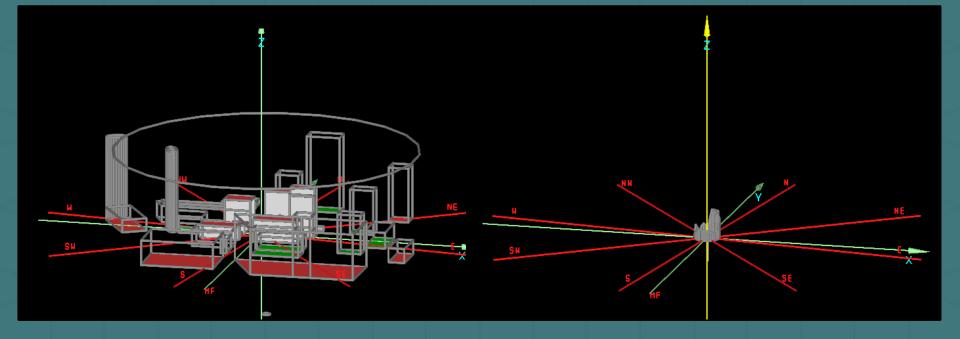


2D - 3D Volumes



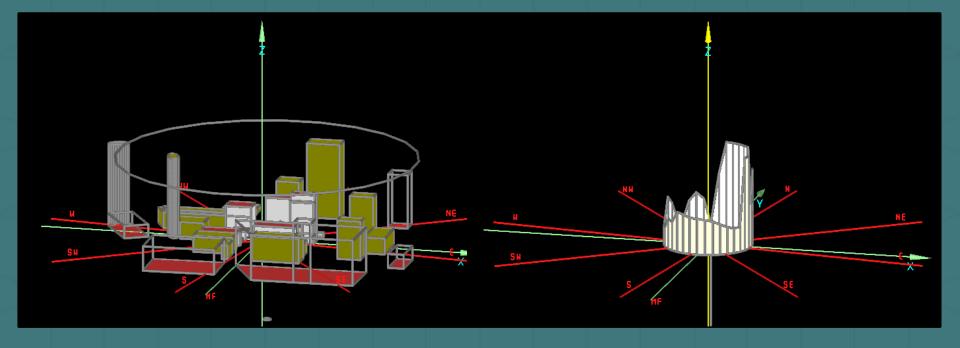
Horizon Geometry

3D volumes – Field Extension Radius


Horizon Geometry – Field Extension Radius

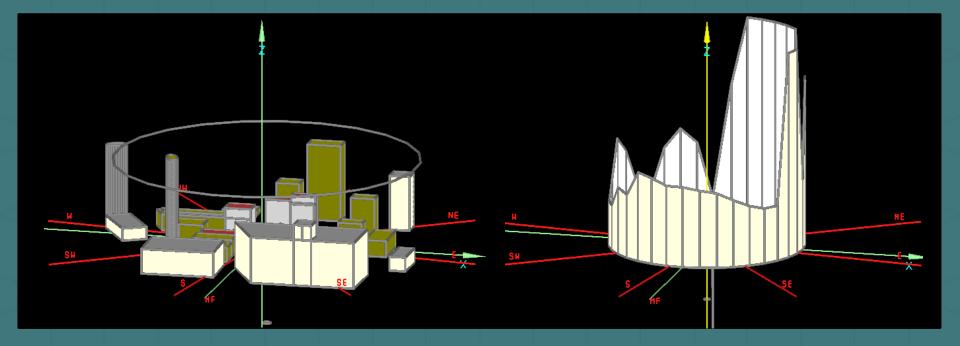
Comparison 1 – Radius 100 ft.

2D - 3D Volumes


Horizon Geometry

Comparison 2– Radius 360 ft.

2D - 3D Volumes


Horizon Geometry

Comparison 3 – Radius 800 ft.

2D - 3D Volumes

Horizon Geometry

Results - Space Conditioning Targets

_C	Comparison 1 R – 100 ft.		Comparison 2 R – 360 ft.		Comparison 3 R – 860 ft.	
Heating Demand Cooling	5.35 6.	.08 Dem		5.39 6.21 6.89	Heating Demand	5.39 6.23 6.89
Demand Heating	4.06	6.54 Dem	oling nand ating 4.0	6.66	Cooling Demand Heating	4.07
Load Cooling Load	4.53 3.39 3.06	Coc	Load 3.33 oling 3.33 Load 3.12	4.55	Load Cooling Load	4.61 3.33 3.17

3D Volumes Horizon Geometry


Results - Solar Access - Winter (Heating)

Reduction Factors (100% - Full exposure)

3D Volumes Horizon Geometry

Results - Solar Access - Summer (Cooling)

Reduction Factors (100% - Full exposure)

3D Volumes Horizon Geometry

Conclusions

- The new WUFI Dynamic Shading Methodology allows an expedite calculation of site shading.
- The 'dual pathfinder protocol + horizon geometry' are intended to account for 'seasonal shading' within the imported geometry in WUFI.
- From the comparative test, modeling '3D volumes' or modeling the 'Horizon Geometry' bring similar results on site shading.
- These updates help to determine the potential benefit of shading from adjacent structures for decreasing summer energy requirements, or the loss of warming influences which increases demands during winter.

Thank you !

ANDRES PINZON apinzon@phius.org