

Optimization on Economic Efficiency of a Typical Nearly Zero Energy Residential Building Based on Life Cycle Cost Method

• Sun Deyu & Li Zheng

Institute of Building Environment and Energy China Academy of Building Research

Background

Nearly zero energy building (NZEB) has become the development trend of building energy efficiency.

Chinese government set a goal∶ By 2020, NZEB≥10 million m2 By 2020, Energy efficiency 20%

Background

- Indoor environmental parameters
- Envelope performance parameters
- Economy parameters
- Equipment performance parameters
- Other parameters

Multi-parameter & Nonlinear Optimization Problem

• Cost curve of Passive House Institute (PHI)

P1: Jump point, ~15kWh/(m²•a), where heat system can be cancelled
P2: Stationary point, ~30kWh/(m²•a)

• Cost curve of Passive House Institute US (PHIUS)

Differences:

- No jump point in the curve, stationary point is cost optimal
- Less benefit from capacity reduction for relatively low-cost heating equipment used in US residential
- Lower fuel prices, weakening the cost per kWh saved $_{10/10/17}$

• Cost curve in China cold areas

• The framework of optimization

Typical building model

- Located in Beijing
- 27 floors, 35593 m²
- Hourly weather file from IWEC(International Weather for Energy Calculations)

Set point of HVAC system

Room type	Indoor design air parameter		
	summer	winter	
Living room	26℃, 60%	20 °C	
Bedroom	26℃, 60%	20 °C	
Toilet	26°C, 60%	20 °C	
Kitchen	26 $^\circ\!\!\mathbb{C}$ (No humidity control)	20 ℃	
Staircase	λ	5℃	

Schedules

e.g. Weekdays, bedrooms

Objective function

• Life cycle of building

- 90% or more
- Initial investment
 - Insulation
 - Wall
 - Window
 - Heat pump

- ...

- Operation cost
 - Electricity
 - Gas

Objective function

• Initial *investment*

 $F \downarrow ini = \sum_{j=0,25} f = \left[(F \downarrow ins + F \downarrow wi) (1 + r \downarrow e) f - j \right] + \sum_{k=0,17,34} f = \left[(F \downarrow so + F \downarrow hr + F \downarrow hp) \right]$

Objective function

Operation cost

 $F \downarrow oc = \sum i = 1 \uparrow n [w(E \downarrow h + E \downarrow C)(1 + r \downarrow e) \uparrow -i]$

n——Building life span, 50 years (1);

- $E \downarrow h$ ——Annual heat energy demand per unit area;
- $E \downarrow C$ ——Annual cooling energy demand per unit area;
- w——Electricity price, considering external cost of electricity generation in the coal power chain 0.88¥/KWh②;

① Dong Chao, et al. Life cycle assessment for integrated building energy consumption [J]. HV&AC, 2014, 44(9):91-96

2 Jiang Ziying. Study on the External Cost of Nuclear Power and Coal Power in China
 [D]. Beijing, Tsinghua University, 2008

Economic parameters

Building materials or equipment	Unit price	Notes
EPS insulation board	650 ¥/m³	
Active external shading device	1 500 ¥	
Fresh air total air heat recovery unit	Y = {6 600,8 000,12 276,23 800}(¥) X={0.6,0.75,0.78,0.81}	X:total heat recovery efficiency
External window	Y = 2 500 –1 000X (0.7=< X_1 =<1.1) (Y/m ²)	X:external window U-value
External wall	400 ¥/m²	
Heat pump unit	Y = 1 525 + 0.39X (X=<3 600) (Y) Y = 470 + 0.88X (X>3 600) (Y)	X:capacity of unit (W)

Range of variables

Variables	Nomenclature	Туре	Range	Step size
External wall U-value	K↓ex	Continuous	$0.1 \sim 0.3 \text{ W/(m^2 \cdot K)}$	0.05
Roof U-value	<i>K</i> ↓roof	Continuous	0.1~0.3 W/(m ² •K)	0.05
Summer external shading coefficient	<i>Sl</i> out	Continuous	0~0.5	0.1
Total heat recovery efficiency	η↓HR	Discrete	{0.6,0.75,0.78,0.81}	-
External window U- value	<i>K↓</i> wi	Discrete	0.7~1.1 W/(m ² •K)	0.1
South window-wall area ratio	R↓s	Discrete	{0.433,0.5,0.6}	-
East/west window- wall area ratio	<i>R↓</i> e \ <i>R↓</i> w	Discrete	{0.1,0.2,0.3}	-
North window-wall area ratio	<i>R</i> ↓n	Discrete	{0.275,0.3,0.4}	-

Simplification of optimization

It was found that:

- Optimal value of summer shading coefficient is always fixed at the upper bound
- Optimal value of window-wall ratios are always fixed at the lower bound

Window area is the dominating factor of life cycle cost for its high price!

Simplification of optimization

However, the window area should have a lower limit to meet the **indoor lighting need**

• According to lighting level IV of *Standard for daylighting design of buildings*:

Lighting level	Side lighting	
	Glazing to floor area ratio	Lighting effective depth(m)
Ι	1/3	1.8
II	1/4	2.0
III	1/5	2.5
IV	1/6	3.0
V	1/10	4.0

• The lower bound of typical building

South	North	East/West
0.433	0.275	0.1

Optimization results

• 5.5 hours, 217 steps

Variables	Optimized value	Set range
External wall U-value	0.247	0.1~0.3
External roof U-value	0.153	0.1~0.3
Heat recovery efficiency	0.75	{0.6,0.75,0.78,0.81}
External window U-value	1.1	0.7~1.1

Optimization results

Other results under the optimal scheme of building parameters

Minimum life cycle cost: 804 Υ/m^2

Initial investment: 661 Y/m^2

Initial investment: 143 Y/m^2

Building heat and cooling system can be integrated!

Annual heat demand: 8.03 kWh/($m^2 \bullet a$)

Annual cooling demand: $17.73 \, kWh/(m^2 \bullet a)$

Annual electricity consumption: 10.18 kWh/ $(m^2 \bullet a)$

Building heat and cooling system can be integrated! This optimal scheme has crossed the threshold of jumping.

Conclusion

- 1. Considering environmental cost of energy, the technical scheme and performance of residential buildings in the cold areas can be optimized for economic and environmental benefits.
- 2. The jump point of cost curve exist in the typical nearly zero energy residential buildings in cold areas when the heat pump can meet both the heat and cooling needs.
- 3. A multi-objective and multi-parameter optimization method and platform for NZEB is established. The method combines the energy consumption simulation tool TRNSYS and the optimization analysis tool Genopt to launch optimization.

