Assessing Masonry Freeze-Thaw Risk in a Deep Energy Retrofit of a Large, Old Chicago Building

12TH NORTH AMERICAN PASSIVE HOUSE CONFERENCE

SEPTEMBER 29, 2017 PRESENTED BY RANDY VAN STRAATEN, PHD, P.ENG

RD BUILDING SCIENCE LABORATORIES

Before: YMCA Lawson House 30 Chicago Ave W., Chicago IL

583 units, 200 sqft, shared bathrooms, \$140/month

reviews.birdeye.com (Aug 14, 2011)

- \rightarrow "plenty to do in the area..."
- \rightarrow "No utilities, low-cost phone and internet available..."
- → "programs for getting back on one's feet...awesome caseworkers, and all in all, a million times better than being on the street."
- \rightarrow "Ohhhh the cons! Curfew for guests!!!..."
- \rightarrow "CRAZY neighbors (like random screaming)"
- → "FULL of bedbugs and roaches, community bathrooms, funny smells in the hallways..."

Vision: YMCA Lawson House 30 Chicago Ave W., Chicago IL

- \rightarrow Peter Holsten buys for \$1 in 2013
- \rightarrow At least 50 years low-income housing
- \rightarrow \$100 million renovation
- \rightarrow 400 sqft unit with individual bathrooms and kitchens

FARRASSOCIATES

- \rightarrow National Register of Historic Places submitted
- \rightarrow Sought LEED Platinum
- → Sought PHIUS+2015 Walls +30 Effective R-value

"Effective" R-value

R-value definitions

 \rightarrow Installed or Nominal R-value, R_{Nominal}

- \rightarrow Assembly R-value or Centre-of-Cavity
- \rightarrow Clear Wall R-value , R_{Clear Wall}
- \rightarrow Whole Wall R-Value, R_{Whole Wall}
- \rightarrow Overall (Wall) R-Value

John Straube "Meeting and Exceeding Building Code Thermal Performance Requirements" downloads.cpci.ca/491/download.do

Schematic of ThermoMetric Guard Hot Box

www.masonrysystemsguide.com

Retrofit Insulation Options – Insulation Materials

Retrofit Insulation Options - Interior vs Exterior Insulation

Retrofit Insulation Options – Interior Insulation Performance

Ueno, K, Straube, J., and Van Straaten, R., "Field Monitoring and Simulation of a Historic Mass Masonry Building Retrofitted with Interior Insulation" *Thermal Performance of the Exterior Envelopes of Whole Buildings XII International Conference,* Clearwater, Florida, 2013

Retrofit Insulation Options - Interior Insulation Performance

Retrofit Insulation Options – Interior Insulation Performance

Retrofit Insulation Options - Interior Insulation Performance

Retrofit Insulation Options – Interior Insulation Performance

Tile Config	Perimeter Insulation	Insulation under Bottom Track	Floor-to-Flor On-Centre Wall Height			
			10 ft.	12 ft.	14 ft.	16 ft.
Hollow	No	None	R-13.6	R-15.0	R-16.1	R-17.1
	Yes	None	R-15.7	R-17.0	R-18.1	R-19.0
	Yes	R0.75	R-15.7	R-17.1	R-18.2	R-19.1
	Yes	R5	R-15.8	R-17.2	R-18.3	R-19.2
Foam Filled	No	None	R-15.7	R-17.1	R-18.2	R-19.1
	Yes	None	R-17.4	R-18.7	R-19.7	R-20.6
	Yes	R0.75	R-17.4	R-18.7	R-19.8	R-20.6
	Yes	R5	R-17.6	R-18.9	R-19.9	R-20.8

Modelling results for ccSPF wall and PIC perimeter insulation

Freeze Thaw Risk of Retrofit Insulation

Is There is an ASTM for That?

Designation: E3069 – 17

Standard Guide for Evaluation and Rehabilitation of Mass Masonry Walls for Changes to Thermal and Moisture Properties of the Wall¹

11.2.2 The increased potential for freeze-thaw damage within the masonry should be assessed. The critical moisture content and temperature gradient change across the wall assembly should be evaluated to assess the increased potential for freeze-thaw damage, to include the temperatures within the outermost one-half inch (1/2 in.) of the masonry under the original wall performance as compared to the proposed assembly. Additionally, the number of expected annual freeze-thaw cycles of the proposed wall assembly as compared to the existing wall assembly should be compared. Any increase in the freeze-thaw cycles should be carefully considered in conjunction with the masonry's saturation coefficient and freeze-thaw durability testing. The coincident moisture content of the materials when the additional freeze-thaw cycles are predicted to occur and the location within the wall assembly should also be considered.

Design Limit States 101

Design Limit States 101 - Load vs Resistance

Design Limit States - Load

Predict moisture contents during freezing for insulation retrofits options

Design Limit States 101 - Resistance

Critical Freeze-Thaw Saturation (Scrit)

Van Straaten, R., Trainor, T., and Schumacher, C., "Critical Freeze-Thaw Saturation Measurement of In-Service Masonry" *Thermal Performance of the Exterior Envelopes of Whole Buildings XIII International Conference,* Clearwater, Florida, 2016

Design Limit States 101 - Load vs Resistance

Exploratory Openings/ Sampling

Exploratory Openings – Brick Over Speed Tile Wall Assembly

Exploratory Openings – Multi-Wye Brick Wall Assembly

Exploratory Openings – Multi-Wye Brick Wall Assembly

Existing Wall - Conditions Predicted using WUFI Model

Retrofit Insulation Options - 4.5" of interior ccSPF

Retrofit Insulation Options - 4.5" of interior ccSPF - Illustration

Masonry Wall Moisture Measurements (NY project)

Masonry Wall Moisture Measurements (NY project)

Semi-rigid MFI w/ smart retarder

Masonry Wall Moisture Measurements (NY project)

Retrofit Insulation Options - 4.5" of interior ocSPF & smart VB

Retrofit Insulation Options - 4.5" of interior ocSPF & smart VB - illustration

Insights

- → It will be hard to reach R_{Whole_Wall} of 30 (achieve passive house) due floor slab interfaces (10 to 18 R_{Whole_Wall} is achievable)
- \rightarrow 1 ¼" steel studs and hat channels to mount drywall (+1 to 4 R_{Whole_Wall})
- \rightarrow 2' of perimeter insulation along ceiling (+2 R_{Whole_Wall})
- \rightarrow Filling hollow tile slab fill blocks with spray foam adds (+2 R_{Whole_Wall})
- \rightarrow ccSPF vs ocSPF (or mineral wool) w/smart vapour
 - \rightarrow Both options appear low risk of freeze thaw degradation but ocSPF is least risky
 - \rightarrow ccSPF R_{whole_Wall} (+3 to 5 R_{whole_Wall})

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© RDH Building Science Inc. 2017

