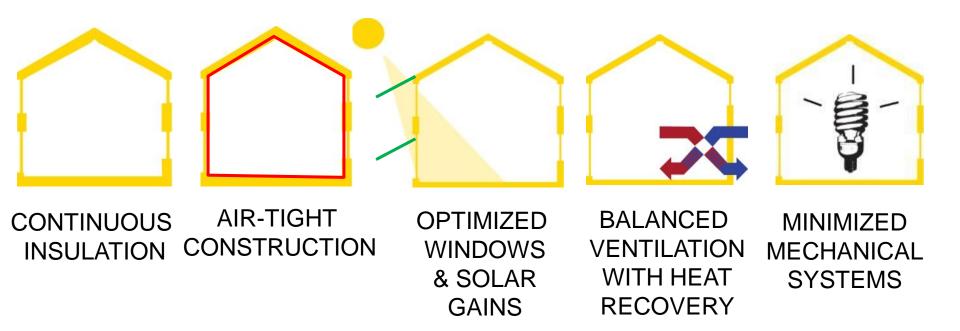


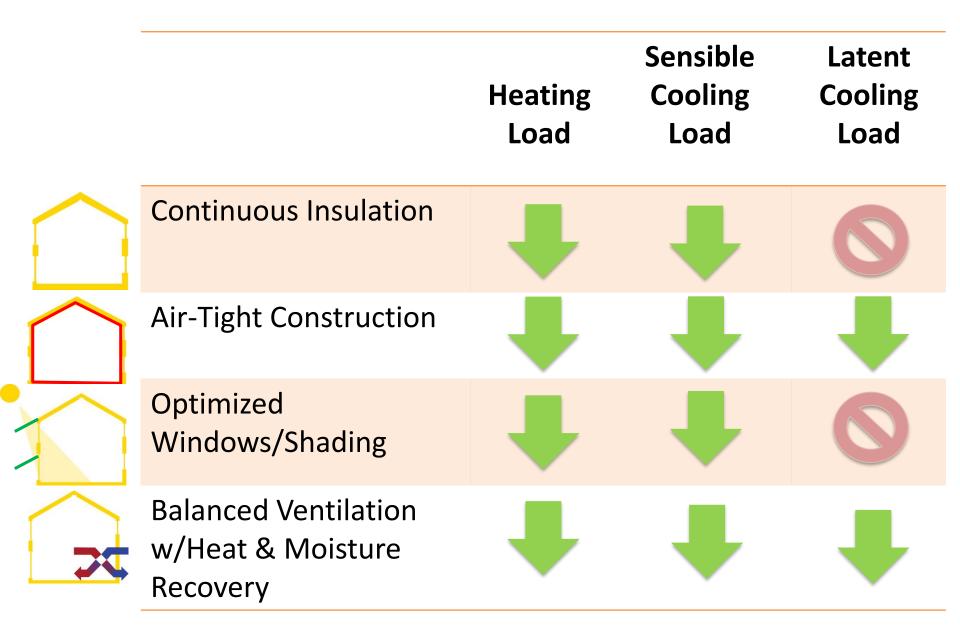
LATENT LOADS, PSYCHOMETRICS, AND THE SENSIBLE HEAT RATIO

Passive House Institute US


Lisa White, PHIUS Certification Manager

- 1. BACKGROUND
- 2. PHIUS+ 2015 COMPLIANCE
- CAPABILITIES OF WUFI PASSIVE/PLUS
 CHALLENGES OF HANDLING LATENT LOADS

PASSIVE BUILDING PRINCIPLES



DRIVERS OF LATENT LOADS

- Internal loads
- Occupants
- Exchange through opaque partitions
- Natural Ventilation
- Mechanical Ventilation
- Infiltration

RESULT OF APPLYING PASSIVE BUILDING PRINCPLES:

SENSIBLE COOLING LOAD

LATENT COOLING LOAD

SENSIBLE HEAT RATIO

SENSIBLE HEAT RATIO

Sensible Cooling Load

Total Cooling Load

SHR = 1, No latent load

HIGH SHR = Low latent load relative to total load

LOW SHR = High latent load relative to total load

VLI (Ventilation Load Index):

"the load generated by one cubic foot per minute of fresh air brought from the weather to space-neutral conditions over the course of one year"

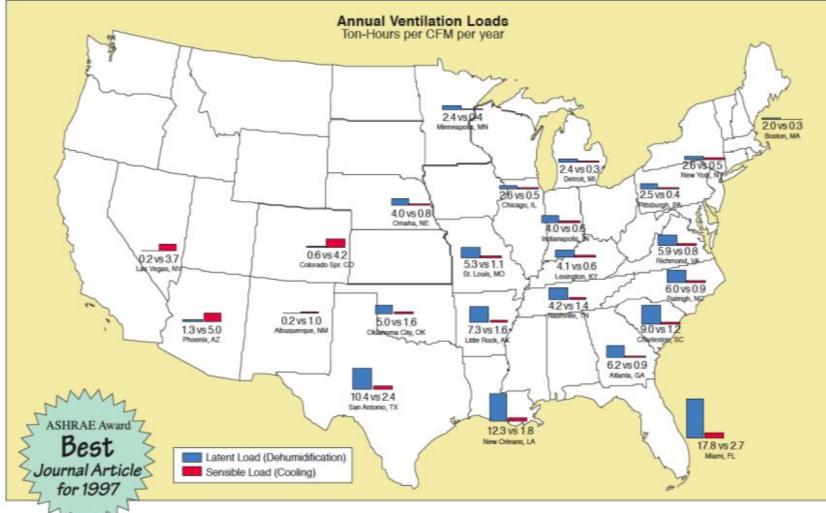


Fig. 1: Map of Ventilation Load Indexes (VLI) for selected continental U.S. locations

		Ventilation Load Index (Ton-hrs/scfm/yr)		Cumulative Load Ratio
City	State	Latent + Sensible	Total	Latent:Sensible
Albuquerque	NM	0.2 + 1.0	1.2	0.2:1
Boston	MA	2.0 + 0.3	2.3	6.4:1
Detroit	MI	2.4 + 0.3	2.7	7.4:1
Minneapolis	MN	2.4 + 0.4	2.8	6.2:1
Pittsburgh	PA	2.5 + 0.4	2.9	5.8:1
New York	NY	2.6 + 0.5	3.1	5.1:1
Chicago	IL	2.6 + 0.5	3.1	5.0:1
Las Vegas	NV	0.2 + 3.7	3.9	0.04:1
Indianapolis	IN	4.0 + 0.6	4.6	6.6:1
Lexington	KY	4.1 + 0.6	4.7	7.4:1
Colorado Spr.	co	0.6 + 4.2	4.8	0.1:1
Omaha	NE	4.0 + 0.8	4.8	5.3:1
Phoenix	AZ	1.3 + 5.0	6.2	0.3:1
St. Louis	MO	5.3 + 1.1	6.4	4.7:1
Oklahoma City	OK	5.0 + 1.6	6.6	3.2:1
Richmond	VA	5.9 + 0.8	6.7	7.2:1
Raleigh	NC	6.0 + 0.9	6.9	6.8:1
Atlanta	GA	6.2 + 0.9	6.9	6.7:1
Nashville	TN	6.2 + 1.4	7.6	4.6:1
Little Rock	AK	7.3 + 1.6	8.8	4.7:1
Charleston	SC	9.0 + 1.2	10.3	7.3:1
San Antonio	TX	10.4 + 2.4	12.8	4.4:1
New Orleans	LA	12.3 + 1.8	14.1	6.8:1
Miami	FL	17.8 + 2.7	20.5	6.7:1

PsyCalc

Hours between 65°F DB 85°F DB >65 gr/lb

Chicago, IL 1760 hours

20% of year!

Payle			Ho	ourly C	ata Bil	nning and	l Statist	ics • X
North America		~	e	559	Elevatio	on ft		0 0
USA		~	Save	12.0	Latitude	e North	Use	External Data
Illinois		~		37.9	 Longitu	de West		
Chicago Ohare	Intl Airport						1	Hide Stats
Select Binning	д Туре:	Weathe	r Data Statistics for	selected s	chedule:			6
Standard		Define	selection criteria:		Ec	qual or Above		Equal or Below.
Bin on	Dry Bulb ~	i	Dry Bulb Temperatu	ure °F	~ (65.00 🖨	AND ~	85.00 🖨
Bin size	2 ~		AND	~				
O Joint Freque	ency	6	Humidity Ratio gr/l	hda	~ (65.00 🖨	N.A. ~	70.00
-	2 ~	U	N.A.	U U.U.		03.00	IN.A.	10.00
	2 ~		IN.A.					
vv size	2				(50.00	N.A.	70.00
Select Months	s:		N.A.	× .				
January	July				~ (50.00 🔹	N.A. 👻	70.00
February	August						Calcin	E
March	September	<i>c</i> , , <i>c</i>		Curr 11			Get Stats	Export Stats
April	October	Stats fo	or the selected hours	fitting the :	selection cri	teria:	Numbe	er of hours: 1760
May	November	Des	scription	Units	Minimum	Maximum	Wt Average	Mean
June	December	Dry	bulb temperature	°F	65.66	84.92	74.22	75.29
All Months	Clear Months			°F	54.30	78.72	64.23	68.67
			t bulb temperature	°F	59.23	79.04	67.25	69.13
# of Hours			nidity ratio	gr/lb	65.32	151.13	92.47	108.22
Selected	8760		ative humidity	%	37.08	100.00	71.71	68.54
			nalpy	Btu/lb da	26.11	43.39	32.27	34.75
			nd speed	mph	0.00	26.40	9.62	13.20
Crea	te Bins		d direction	degrees	0.00	360.00	173.70	180.00
		Atm	ospheric pressure	psia	14.17	14.56	14.37	14.37

PHIUS+ 2015

Performance based standard with prescriptive requirements → Concerned with both energy and comfort

 Defines infiltration limit
 Defines ventilation requirements
 WUFI Passive software used for compliance

AIR-TIGHTNESS PHIUS+ 2015 Requirement

Acceptable Air Tightness of Walls in Passive Houses

Mikael Salonvaara and Achilles Karagiozis, Owens Corning

1 Introduction

It has long been known that air tightness is a critical element of a passive building, for two ti nas ang techt sanvait that an organises to a criterior exterior or a passive outcome, no average for and reasons. One is that super-insulation can only do so much to improve the energy performance of a building while the heat losses from air infiltration remain uncontrolled. The other is that air a vunning white the most invoice involution an initialization exhibit an ancounteries, the concert is that an leaks can cause moisture problems / damage, and more-insulated assemblies are fundamentally reass can cause maxame promems / uamage, and more-instance assembles are umaamenany more susceptible to such problems due to decreased heat flux, which lowers the rate of drying.

(Nisson & Dutt 1985, LePage et al 2013) When it comes to setting guidelines and standards for air-tightness, there has been a range of violat is control to section generative and administration for an organized, uncer the over a range recommended performance thresholds, historically and in current practice. For example:

 1-5 air changes per hour at 50 Pascals pressure difference (ACH50) in the detached house resolution context (Nexco A Dun 1985), 1-5-3 ACH50 (climate zone dependent) in the current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (climate zone dependent) in the Current DOE Zero Energy Ready Home 10 & ACH50 (cl The Air Barrier Association of America (ABAA) has set requirements for air barrier materials NOCAM MARKET ASSOCIATION OF AMERICA (ADAA) has set requirements for air ourner materians and assemblies. The air barrier materials should not have more than 0.004 cfm/ft2 air leakage

and assemblies. The air barrier materials should not have inore than 0.000 cluster an standage at 75 Pa and the air barrier assemblies (such as walls) should not leak more than 0.04 cfm/H2

Consider how that translates into ACH50. Suppose a two-story home with 2400 square feet of consistent more usual transistances into (AC-162). Suppose a two-starty matter wing cardo square rest of conditioned floor area (exterior dimensions) - 27 feet wide, 44 feet long, and 18 feet high. The conditioned floor area (exterior amensions) - z_1 rect ware, 44 rect rong, and 16 rect rogs, envelope area is then $2^{4}(27^{*}44+27^{*}18+44^{*}18)=4932$ fl2. The interior air volume can be

If the air barrier assemblies meet the ABAA definition, the leakage just through those assemblies 11 the air varrier assembnies meet me ABAA uerinninen, uie reakage just unvoign enooe assembnies would be 0.04 cfm75/tli2 * 4932 ft2 = 197 cfm75 or 11837 ft3/h. In terms of air changes per hour that is (11837 ft3/h)/(16800 ft3/AC) = 0.70 ACH75.

¹ Based on interior air volume, rather than gross building volume

0.05 CFM50/ft²envelope ()R0.08 CFM75/ft²envelope

SUMMARY OF VENTILATION REQUIREMENTS

PHIUS+ Certification GuideBook v1.1

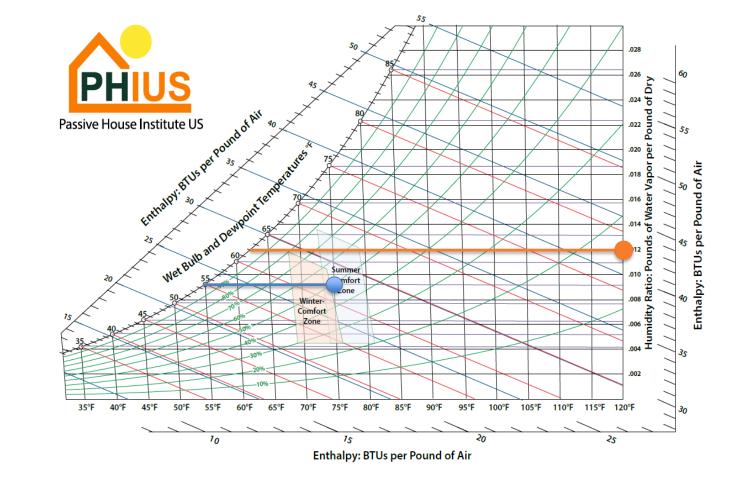
3.5.3 Ventilation

The ventilation system must be capable of at least 0.3 ACH (based on the net volume) on its maximum setting.

PHIUS+ Single Family Quality Assurance Workbook v4.0

1.11: Rater-measured bathroom exhaust rates meets one of the following: >= 20cfm continuous OR 50 cfm intermittent

1.13: Rater-measured kitchen exhaust rates meets one of the following: >=25 cfm continuous, 100 cfm intermittent for range hoods, or 5ACH based on kitchen volume

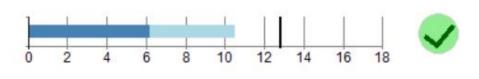

Balanced Ventilation Required

- Unbalanced has consequences for both energy modeling, building durability and IAQ
- Heat recovery is not required, or more than one fan necessarily, but air flow balance is required
- All air flow must be within 10% supply/exhaust, or below a 5 Pa pressurization / depressurization due to the whole-building ventilation.

WUFI PASSIVE ANNUAL LATENT COOLING DEMAND (kBTU/ft².yr)

Influenced by:

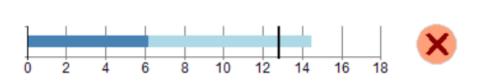
- Natural ventilation (windows), day & night
- Mechanical ventilation
 - Includes latent recovery
 - Includes bypass/economizer mode
- Infiltration
- Maximum dehumidification ratio -- default = 0.012 lb/lb (can input different value)
- Internal sources default value of 0.00041 lb/ft2.hr (can input different value)


PHIUS SET-POINT FOR MAX DEHUMIDIFICATION RATIO IS 0.012 lb/lb (77F, 60% RH, 62F DP)

ASHRAE HANDBOOK HVAC APPLICATIONS – CHAPTER 62 (75F, 50% RH, 55F DP)

WUFI PASSIVE RESULTS WITH **0.012 lb/lb** MAX DEHUMIDIFICATION RATIO

Cooling demand


sensible:	6.19	kBtu/ft²yr
latent:	4.3	kBtu/ft²yr
specific:	10.49	kBtu/ft²yr
target:	12.8	kBtu/ft²yr
total:	31,923.96	kBtu/yr

WUFI PASSIVE RESULTS WITH **0.009 lb/lb** MAX DEHUMIDIFICATION RATIO

Cooling demand

sensible:	6.19	kBtu/ft²yr
latent:	8.27	kBtu/ft²yr
specific:	14.46	kBtu/ft²yr
target:	12.8	kBtu/ft²yr
total:	43,999.2	kBtu/yr

Latent cooling demand estimated almost 2x higher with new set-point!!

WUFI PASSIVE MANUAL J - LATENT COOLING LOAD (kBTU/hr)

General Additional data Foundation interface Manual J

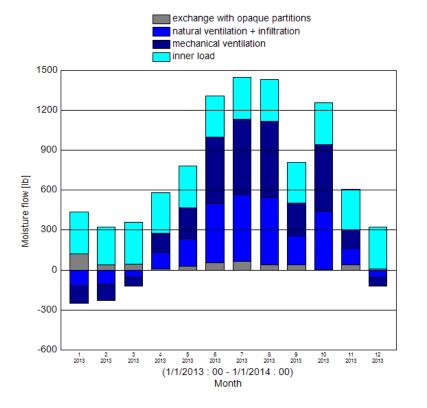
Manual J-residential cooling load calculation

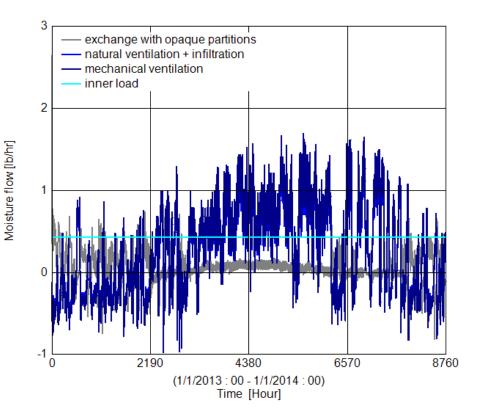
Climate / ventilation			Loa	ds				
Outdoor design temperature [°F]	95	1	Nr.	Internal load	Quantity			
Indoor design temperature (optional) [°F]	77	-	1	Small Plant	6	^	🗋 New	
Outdoor - Indoor moisture difference [%]	50	2	2	Coffee maker - warmer	6		👗 Delete	
Air changes per hour [1/hr]	0.05		3	Dishwasher	6		after	\sim
Altitude correction factor [-]	1	4	4	Microwave	6	~		

[Components

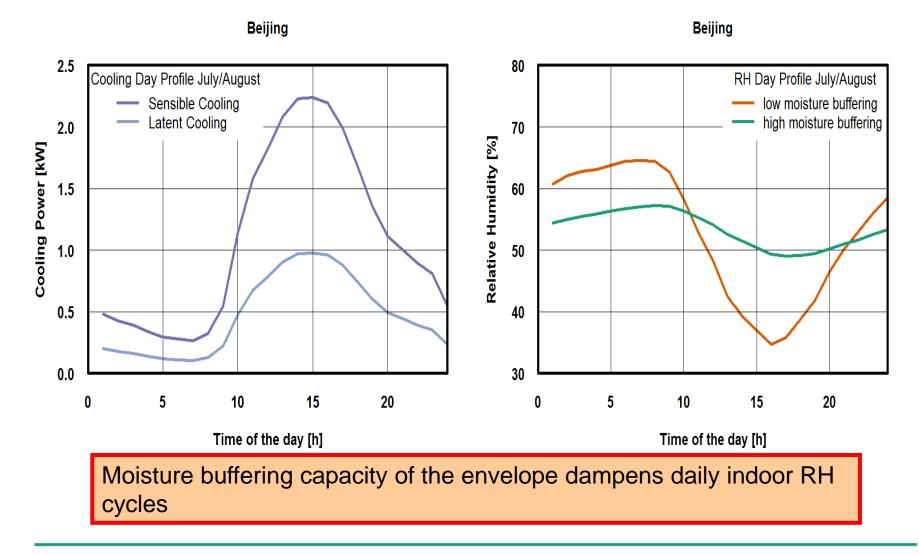
Nr.	Name	Cooling load temperature difference [-]	Heat transfer multiplier [-]	Shade line miultiplier [-]	Orientation	Area [ft²]	U-value [Btu/hr ft² °F]	
1	Z.1, C. 1	10			S (34 %), E (18 %), W (15 %), N	6163.6	0.0282	^
2	Z.1, C. 2	5			Horizontal (100 %)	3116	0.019	
3	Z.1, C. 3	5			Horizontal (100 %)	3116	0.0481	
4	Z.1, C. 4: (SOUTH, Floor 2, Fixed)		1	0.6	S (100 %)	65.5	0.1572	
5	Z.1, C. 5: (SOUTH, Floor 1, Fixed)		1	0.6	S (100 %)	65.5	0.1572	
6	Z.1, C. 6: (SOUTH, Floor 1, Casement)		1	0.6	S (100 %)	81.5	0.1651	~

Results		
Name	Sensible Cooling [Btu/hr]	Latent cooling load [Btu/hr]
Opaque components	2781.3	0
Fenestration	3363.5	0
Ventilation	6472.7	11114.8
Internal loads	18004.1	9210
Infiltration	1051.2	1805.2
Total	31672.9	22130


terim	results	


Cooling temperature difference [°F]	50
Average air change rate [1/hr]	1.5
Altitude building [ft]	610

Status: OK


In

WUFI PASSIVE – Dynamic (WUFIplus) Abbate Case Study – Austin, TX Moisture Flows

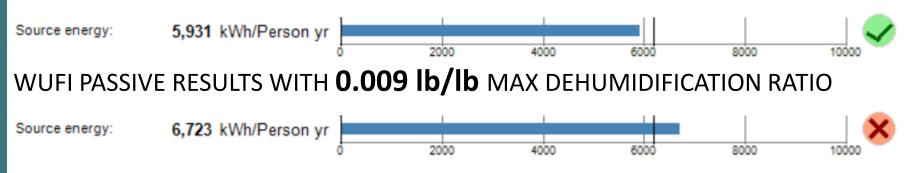
Moisture Buffering Effect on Daily RH Fluctuations

CHALLENGES WITH COMPLIANCE WITH PHIUS+ 2015 IN HOT/HUMID CLIMATES

1) Dehumidify to lower RH = increased source energy use

2) Ventilating dehumidifier = difficult meeting heating demand & heating load targets for PHIUS+ 2015 without balanced ventilation with heat recovery

the state	0	8	Utra Arr		Jura Aire	4	tra Aire	0
	Water Removal*	Current Draw	Efficiency	Energy Factor	Sized For	Air Filter	Dimensions	Weight
Ultra Aire	70 pinta per day	5.1 amps	5.0 pinta per kWh	2.4 L per kWh	Up to 1,800 Sq. Ft.	MERV-11	12"W 12"H 28"L	55 lbs
Ultra Aire	98 pinta per day	5.9 amps	6.1 pints per kWh	2.95 L per kWh	Up to 2,300 Sq. Ft.	MERV-11	14.5"W 19.5 H 32.375"L	81 lbs
Ultra Aire	110 pints per day	6.4 amps	6.2 pints per kWh	3.0 L per kWh	Up to 2,500 Sq. Ft.	MERV-11	21"W 49"H 17"L	119 lbs
Ultra Aire	105 pints per day	4.9 amps	8.8 pints per kWh	4.2 L per kWh	Up to 2,500 Sq. Ft.	MERV-11	20.25"W 21.75"H 41.5"L	140 lbs
Ultra Aire	155 pinta per day	8.0 amps	7.3 pints per kWh	3.4 L per kWh	Up to 3,500 Sq. Ft.	MERV-11	20.25"W 21.75"H 41.5"L	140 lbs
Ultra Aire XT205H	205 pints per day	13.2 amps	5.7 pints per kWh	2.7 L per kWh	Up to 5,000 Sq. Ft.	MERV-11	20.25"W 21.75"H 41.5"L	140 lbs
Ultra Aire	184 pints per day	Dehumktflør: 1.4 ampa Condenser: 9.7 ampa	6.8 pinta per kWh	3.1 L per kWh	Up to 4,000 Sq. Ft.	MERV-11	Dehumidiller: 20.25"W 21.75"H 41.5"L Condenser:	<i>Dehumidifie</i> 110 lbs <i>Condenser</i> 75 lbs
provides	a-Aire SD12 4,300 BTUs ble Cooling	788 8 Mar	Utra Aire	9			10"W 25.5"H 33"L	
XT PATENTS: D570,9	988; 8,069,681; 9,0	52,132	-			-	*at 80°	F and 60% RH Rev 1/5/16


<u>Best</u> Unit: 4.2 L/kWh (8.8 pints/kWh) = COP 2.6!

Most other high performance units with COP ~1.5-2

For heating equip: equivalent to HSPF ${\sim}8$

For sensible cooling: equivalent SEER ~12

WUFI PASSIVE RESULTS WITH **0.012 lb/lb** MAX DEHUMIDIFICATION RATIO

CHALLENGES OF AVAILABLE EQUIPMENT

- 1. AIR CONDITIONING UNITS NOT DESIGNED FOR LOW SENSIBLE HEAT RATIO
- 2. MOST COOLING SYSTEMS ONLY CONTROLLED BY DRY BULB
- 3. LIMITED EFFICIENCY OF MOISTURE REMOVAL /DEHUMIDIFICATION
- 4. LIMITED ERV LATENT RECOVERY EFFICIENCY

COMMON MISCONCEPTIONS

1. "ERV IS A DEHUMIDIFIER"

2. "VRF IS THE MAGIC BULLET FOR ALL SYSTEMS DESIGN"

3. "FULL DEHUMIDIFICATION LOAD CAN BE SATISFIED BY SLOWING DOWN SUPPLY AIRFLOW RATE"

WHAT WE NEED

1). An affordable, efficient, reliable, simple mechanical system solution that handles latent loads (ideally before introduced to the space).

2). Awareness and capability of AC systems to control latent loads

3). Re-think ventilation strategies and requirements?

4). WUFI Passive integrated calculation for latent cooling load and output of SHR

5). Deeper understanding of potential of hygric buffering

WHAT ARE THE SOLUTIONS??