

Natural Resources Ressources naturelles Canada Canada



### **PEER** – Prefabricated Exterior Energy Retrofit

Building Capture Technology 13th Annual North American Passive House Conference, Boston, MA 2018.09.21





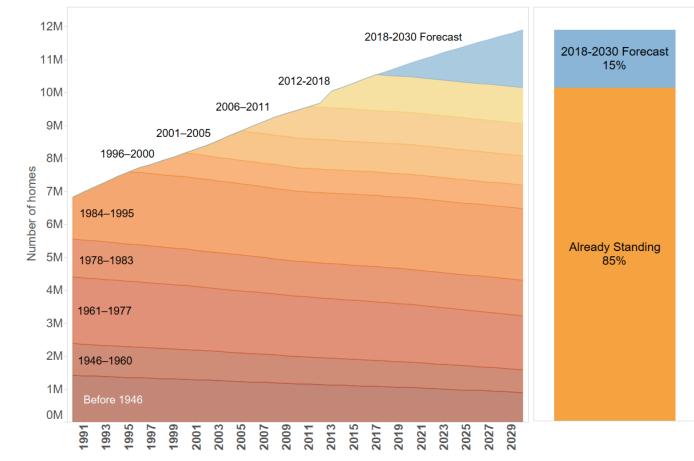


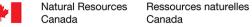




Leadership in ecoInnovation

### Outline


- 1 Canada's housing stock and retrofit activity
- 2 PEER project introduction
- 3 What is a prefab retrofit?
- 4 What challenges and opportunities do they present?
- 5 What is "Building Capture"?
- 6 What building info is required?
- 7 What technologies are available to obtain this info?
- 8 How do they compare?
- 9 Typical workflows






### Canada's Housing Stock

- Replacement rates are slow in Canada.
- We estimate that >85% of the 2030 housing stock is already standing.







### **Retrofit efforts to date**

Over the last 25 years >1M Canadian homes have received some type of energy retrofit. Average annual energy savings -21%

- HVAC system replacements (heating, cooling, hot water and ventilation) 53%
- Windows, interior insulation (mainly attics and foundations) and air-sealing 43%
- Exterior wall retrofits 4%

#### **Barriers:**

- Too expensive perceived poor ROI
- Too disruptive slow, noisy
- Too complicated different trades involved
- Too much risk technical and financial

#### Costs:

• 70 - 90% of the cost of an exterior wall retrofit is fixed (demolition, installing new cladding, etc.). 10% to 30% is R-value dependent. This may justify higher R-values than previously thought.

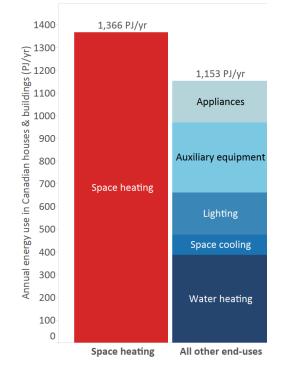
**Opportunities:** 

- Key time to retrofit is when cladding and/or windows need replacement
- Prefabrication can significantly reduce disruption

 $\ensuremath{\mathbb{C}}$  Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018





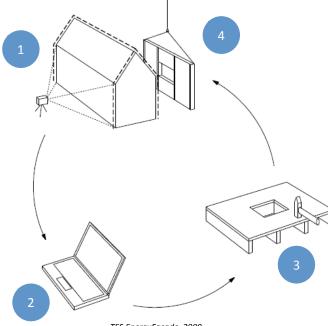

### **PEER Project (2016-2021)**

- Goal: prefabricated building envelope solutions to achieve Net-Zero Ready
- Main research question:
  - Can factory-built, super-insulated, airtight panels be installed directly over existing walls? And if so, could that promise to be a cheaper and more effective way to conduct deep energy retrofits?
- 3 primary research areas:

Natural Resources

Canada

- 1. Building capture: rapid, accurate measurement
- 2. Panel prototypes, fabrication and installation
- 3. Building science: minimizing risks of failure




© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

Ressources naturelles

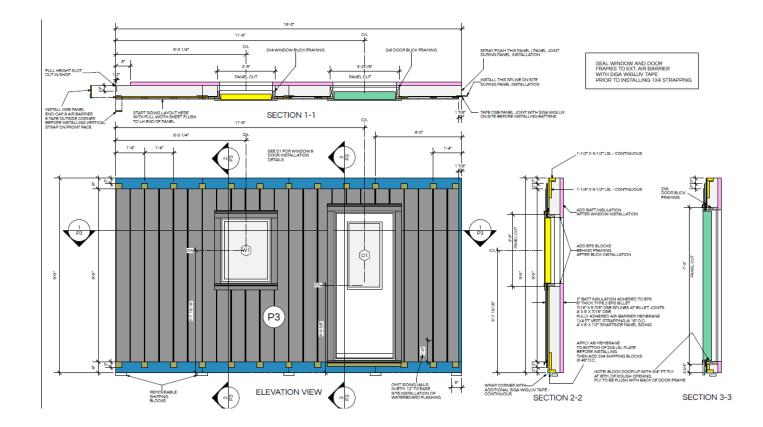


### What is a prefabricated retrofit?



- 1. Scanning or measuring building (building capture)
- 2. Panel design
- 3. Off-site fabrication
- 4. Panel installation

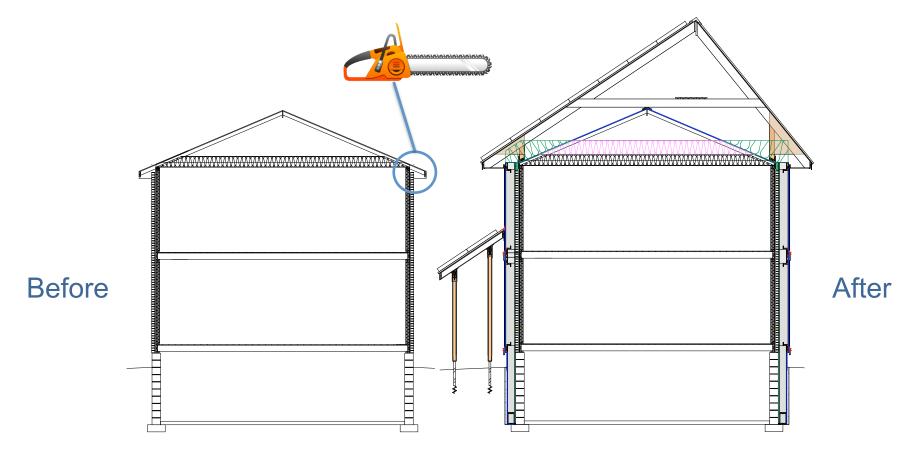
TES EneravFacade, 2009


© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018





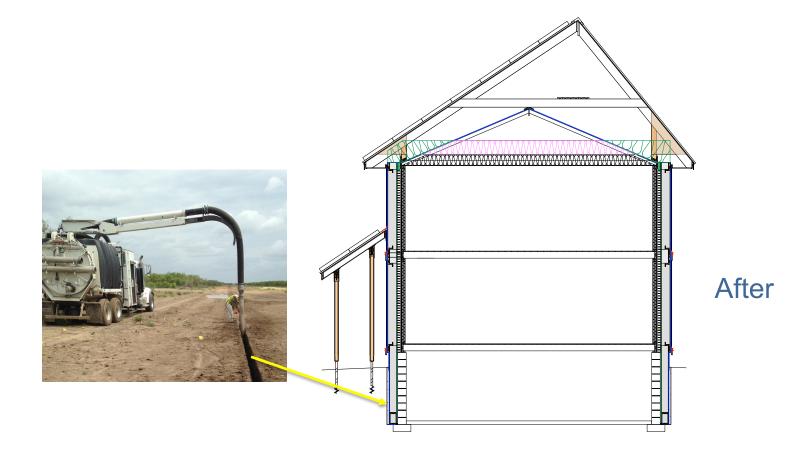









Canada






\*

Canada



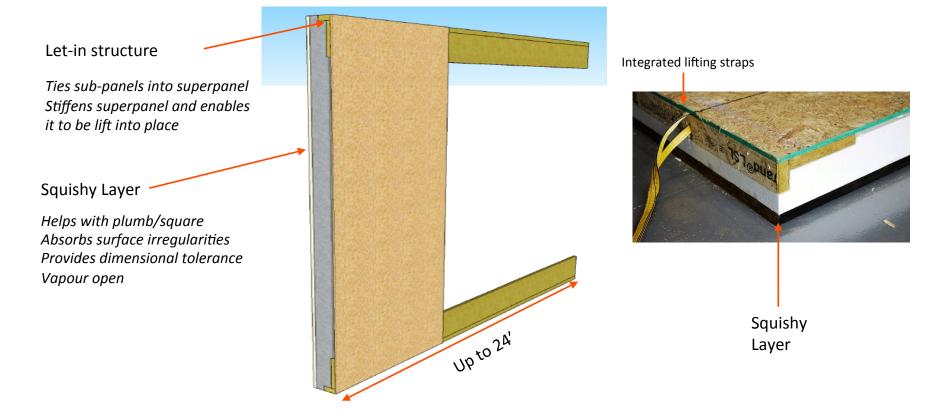




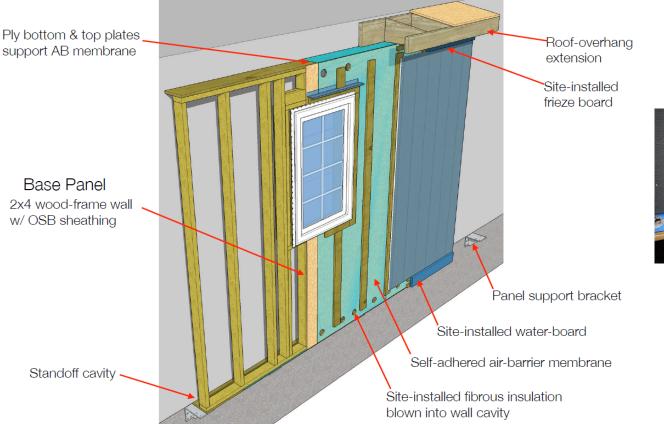
Canada



### **PEER Panel Prototypes**


© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018




Canada



### A. Rigid foam nail-base panel



### **B. Woodframe Standoff Panel**



# Why? What are the advantages of prefabrication?

- Minimizes demolition and site prep
- Less time and disruption on site
- Less waste
- Improves quality control
- Materials stay dry and out of elements
- Lower risk of materials disappearing on site
- Helps address skilled labour shortage
- Solutions can be scaled and rapidly deployed
- Maybe: cost savings at scale





# What is Building Capture?

The process of accurately recording existing 3D building and site conditions using static scanning and/or photogrammetry. (*Reality Capture for building applications*)

Using laser scanning and photogrammetry methods, millions of surface points are measured and mapped to create a textured, high-resolution, geometrically precise 3D model.

#### Advantages:

- Increased accuracy
- Comprehensive documentation
- Fewer trips to jobsite
- Begin designing in 3D





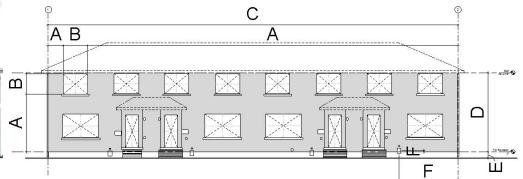
### **Panel fit strategies**

Instrument uncertainty

Interpretation error

Manufacturing tolerances

Installation tolerances


#### **Total Potential Error**





### What are our target levels of accuracy?





| Measurement / Dimension |                                                                            |      | Tolerance |  |
|-------------------------|----------------------------------------------------------------------------|------|-----------|--|
|                         |                                                                            | (in) | (mm)      |  |
| А                       | Position of window in façade (X, Y)                                        | 1/4" | 6mm       |  |
| В                       | Window opening (height and width)                                          | 1/4" | 6mm       |  |
| С                       | Overall building width                                                     | 1/4" | 6mm       |  |
| D                       | Overall building height from top of foundation to underside of soffit      | 1″   | 25mm      |  |
| Е                       | Average grade level to top of foundation                                   | 1″   | 25mm      |  |
| F                       | Centreline of building penetrations, utility meters, and service entrances | 1″   | 25mm      |  |

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018





# What measurement methods are available?

- Hand measurements
- Theodolite total station
- 3D laser scanning
- Photogrammetry





### Measure by hand



#### Pros

- Low cost of entry for training and equipment
- Only important/relevant measurements are recorded

#### Cons

- Accessibility challenges (measuring above reach, or around obstructions)
- The surveyor will only capture what and where they measure and are unlikely to catch small imperfections and peculiarities
- Measurements and transcription prone to human error. Such errors can occur in the field or at the office
- Difficult and time consuming to measure and record complex building geometry

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018





### **Total Station Theodolite**



#### Pros

- Equipment and operators widely available
- Just the facts
- Instruments are extremely accurate with long range capabilities
- Data easy to manage and import into CAD

#### Cons

- Somewhat expensive equipment (\$7-20k CAD)
- Operator needs to know exactly what measurements are required
- Finite number of points captured, higher risk of points being missed ٠
- Field time (and therefore cost) is comparable with laser scanning but only capturing a small fraction of the information
- Time-intensive to "re-section" (moved the total station around a building) and to produce a ٠

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018





# **3D Photogrammetry**



#### Pros

- Hi-res cameras widely available
- Software is inexpensive
- Able to add extra detail in areas of interest
- Everyone's a photographer

#### Cons

- Lower accuracy, precision and more distortion
- Requires a lot of photos and processing
- Requires decent lighting conditions which are difficult to control outdoors
- Some training and experience required for processing
- Results cannot be determined until back in office; high likelihood of missing information
- Not all points may be visible from multiple angles
- Difficult and complicated to make corrections if software generates poor results





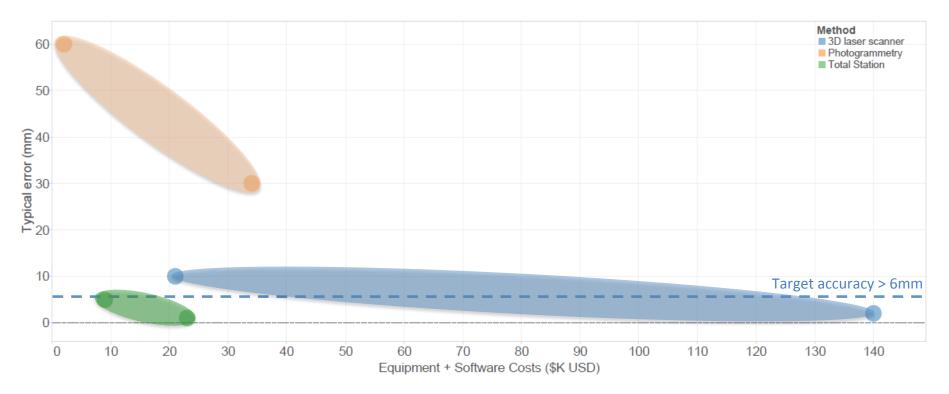
## **3D Laser Scanning**



#### Pros

- Detailed and comprehensive datasets; minimal risk of missing key measurements
- High degree of accuracy and reliable results when done properly
- Reduced trips to site; information is useful to various members of project team
- Technician doesn't need to know what measurements are required

#### Cons


- Software required to view and utilize the data
- Only records measurements within line of site
- Possibility of cumulative error in scan registration
- Difficulty capturing very dark or reflective surfaces
- Extremely large data sets can be difficult to work with

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018





### **Cost vs Accuracy**







### **Comparison Matrix**

|                          | 3D Laser Scanning                                                                                  | Photogrammetry                                                                                         | Total Station<br>Theodolite                                              |  |
|--------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
| Equipment Cost (USD)     | \$20-120k scanner, tripod, accessories                                                             | \$1-2k camera, lens, tripod, accessories                                                               | \$8-20k TS, tripod, accessories                                          |  |
| Software Cost (USD)      | \$1-10k                                                                                            | \$1k-4k                                                                                                | \$1-5k                                                                   |  |
| Typ. field work (hours)  | 2.5                                                                                                | 2 (photo survey)<br>1 (reference measurements)                                                         | 2                                                                        |  |
| Typ. office work (hours) | <ul><li>2.5 (point cloud cleaning +registration)</li><li>4 (producing measured drawings)</li></ul> | 4 (photo orientation, point marking and 3D model)                                                      | 3 (3D model)                                                             |  |
| Typ. error               | ~ 2 – 10mm                                                                                         | > 0.5% (based on test results with<br>calibrated camera setup. ie, 60mm error<br>over 25m measurement) | ~ 1 – 5mm                                                                |  |
| Conclusions              | Current state of the art, best practice for application.                                           | Nascent technique with potential to disrupt, but currently not ready for production applications.      | Dependable legacy approach.<br>Least software and computer<br>intensive. |  |

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018









- Review site photos, aerial imagery, etc.
- Determine number and location of scan stations •
- Determine appropriate quality and resolution
- Determine best time for field work; minimal traffic, • obstructions, etc.
- Notify tenants ٠

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018



Canada





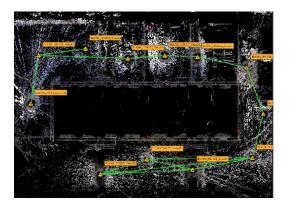


Natural Resources

Canada

- Set up targets and control points
- Set up scan stations
- Level instrument
- Capture scan data
- Capture photographs to colorize point cloud •

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018


Ressources naturelles

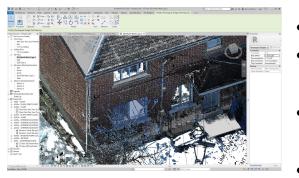
Canada



26






- Download data from equipment and import into database
- Map color data (photographs) onto point clouds
- Register scans together into one coordinate system
- Remove unwanted data. •
- Export point cloud (.pts, .ptx, .e57, .las)

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018









- Import point cloud into CAD software (AutoCAD, Revit, etc.)
- Use specialized tool sets to extract geometry of point cloud, or 'trace' over data to create 2-dimensional representations
- Add dimensions and annotations

OR

Develop shop drawing directly on point cloud

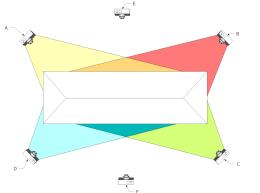
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018










© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018



Canada







- Camera + lens selection and calibration
- Determine approximate number and location of photo stations
- Determine appropriate file format of photos
- Determine best time for field work; minimal traffic, obstructions, etc.
- Notify tenants







- Conduct photo survey
- Take reference measurements ٠

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018









- Import photos into photogrammetry software
- Mark reference points to orient photos ٠
- Build wireframe model of relevant geometry from referenced points ٠
- Establish scale based on reference measurements •
- Export 3D model or point cloud (.dxf, .pts, .las) ٠
- Import model into CAD or BIM and develop shop drawings

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018







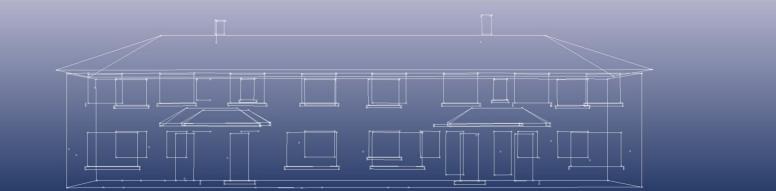



Photo List 🔝 Photo Windows

[Select] Click on an item to select it and to perform various actions or view information.

 $Q \clubsuit \oplus \square$ 

### Thanks!

#### For more info, please visit:

http://www.nrcan.gc.ca/energy/efficiency/housing/research/19406

or contact:

Mark.Carver@Canada.ca or Silvio.Plescia@Canada.ca

Special thanks to: Darcy Charlton, If Then Architecture <u>darcy.charlton@ifthen.ca</u> Jeff Armstrong, Cold Climate Building <u>jeff@coldclimatebuilding.ca</u>



