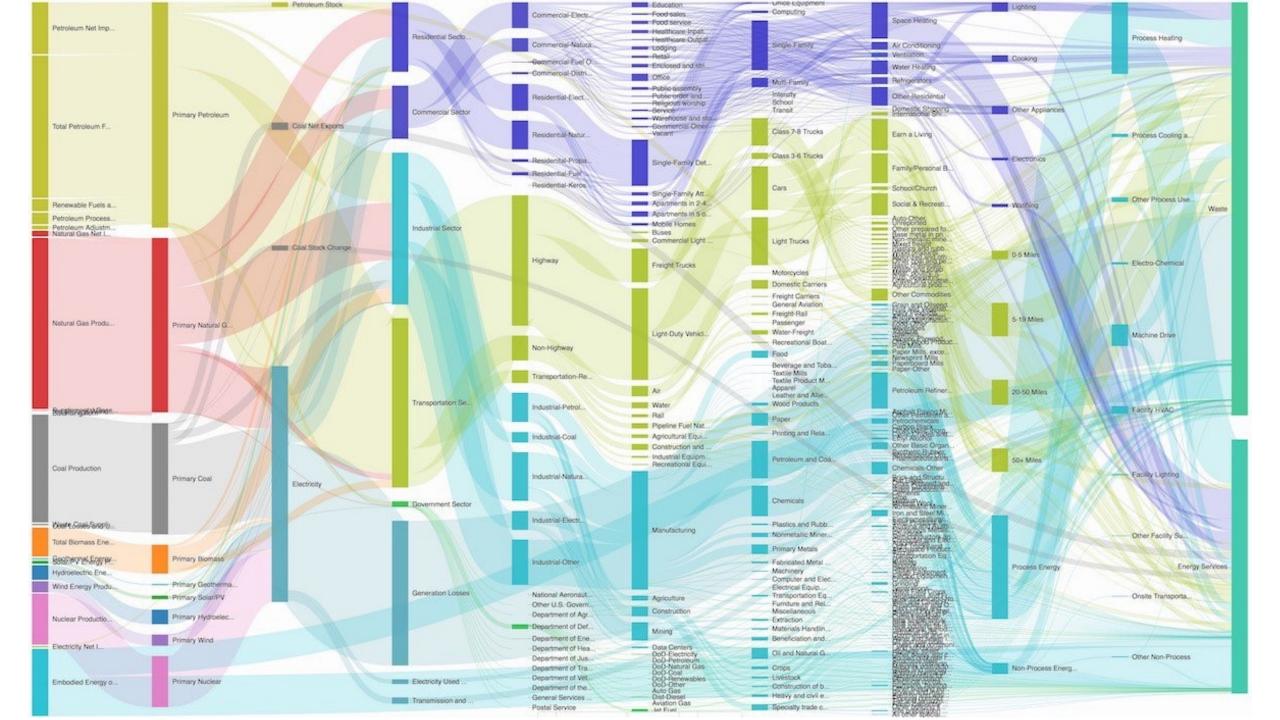
Can the Washington State Energy Code Leap Toward the PHIUS+2015 Standard?—

Passive House Northwest

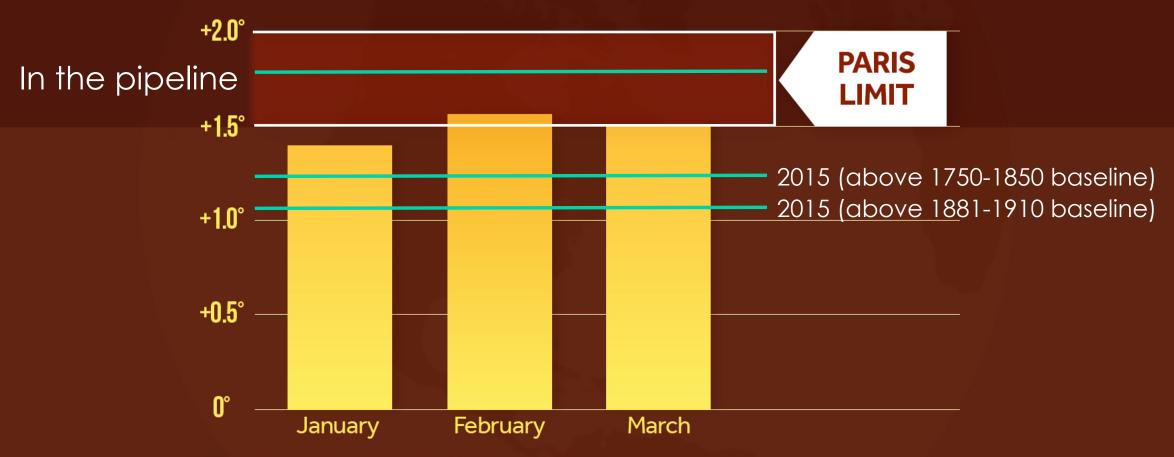
13th Annual North American Passive House Conference Boston, Massachusetts

September 21, 2018



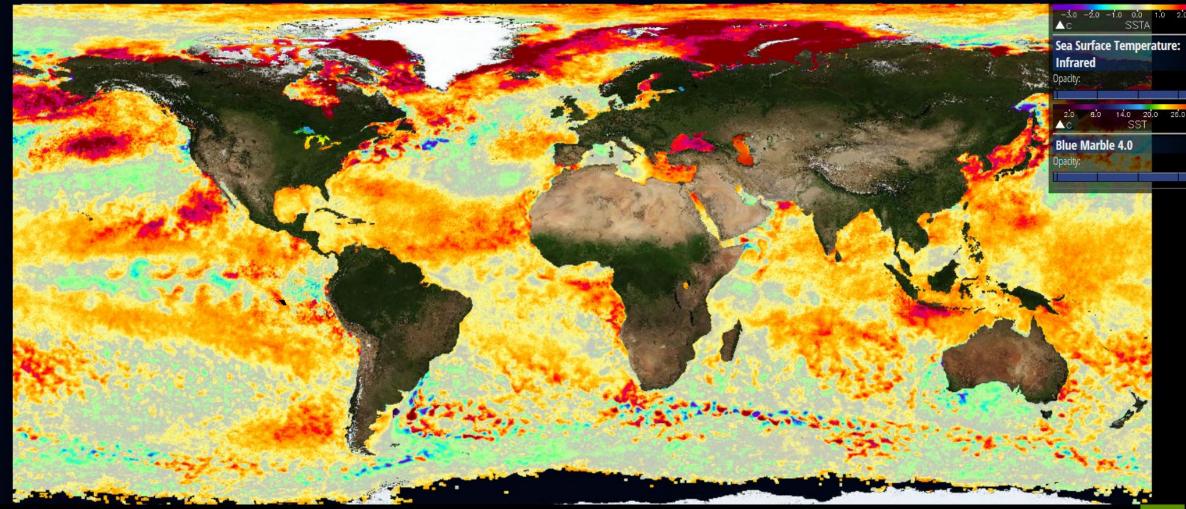
PASSIVE HOUSE + POLICY

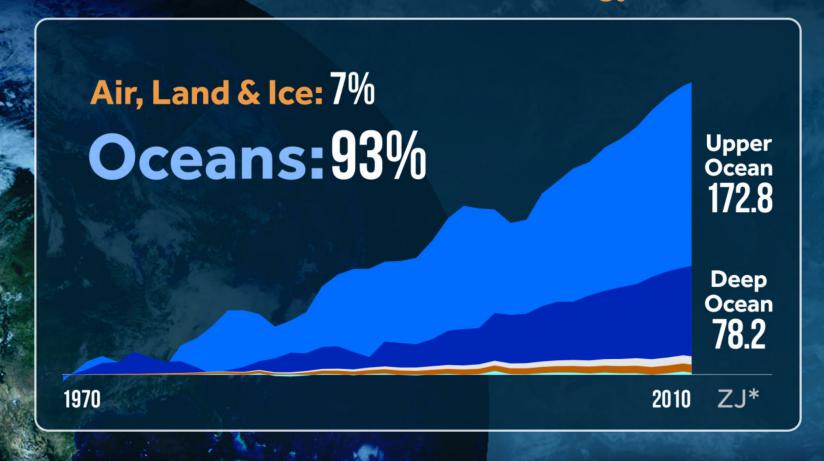
WHY?—



ALREADY PUSHING THE LIMIT

2016 Global Monthly Temperature Anomalies (°C)


Source: NASA GISS and NOAA NCEI global temperature data averaged and adjusted to early industrial baseline (1881-1910). Data as of April 2016.



Ocean Temperatures

Where's the Heat? Earth's Accumulated Energy

*Accumulated Heat Energy Measured in Zettajoules

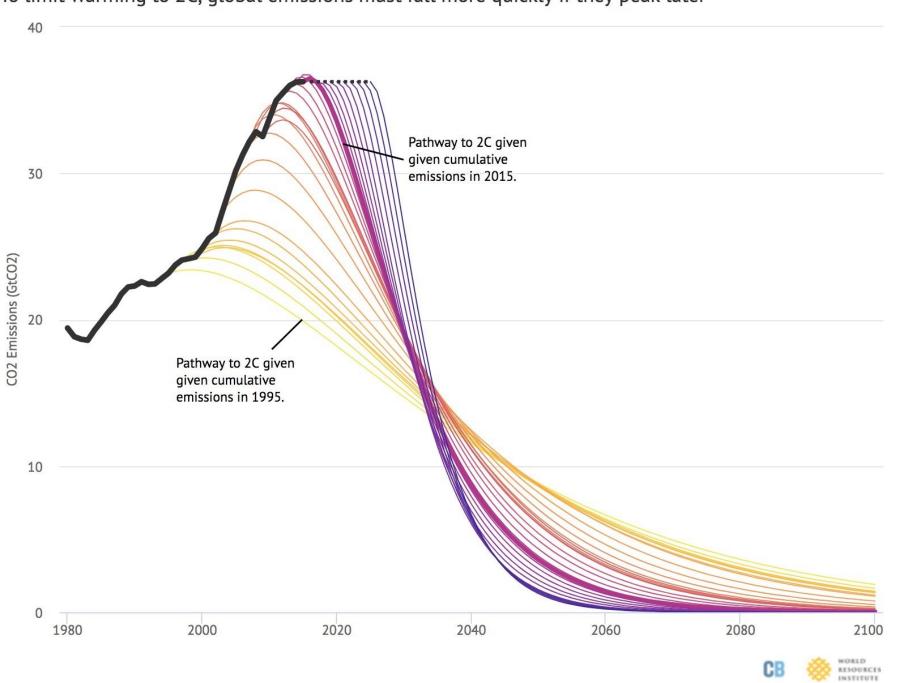
Source: Climate Change 2013: The Physical Science Basis (IPCC) Chapter 3

FORECASTED HIGH TODAY IN BOSTON

74 degrees F

FORECASTED HIGH TODAY IN BOSTON, WITHOUT THE OCEANS

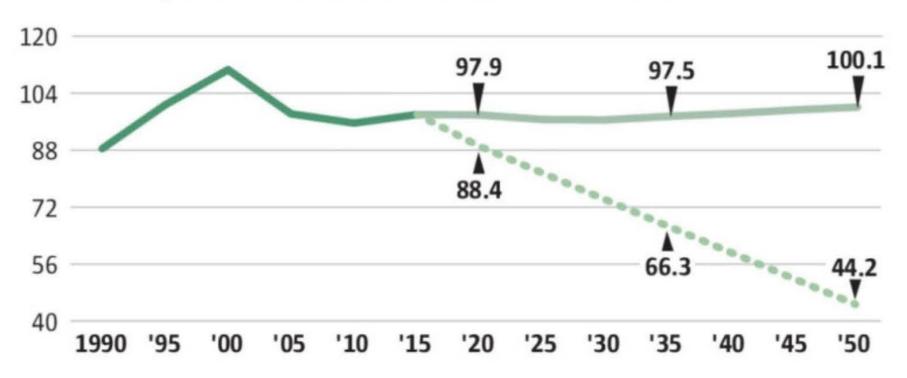
FORECASTED HIGH TODAY IN BOSTON


74 degrees F

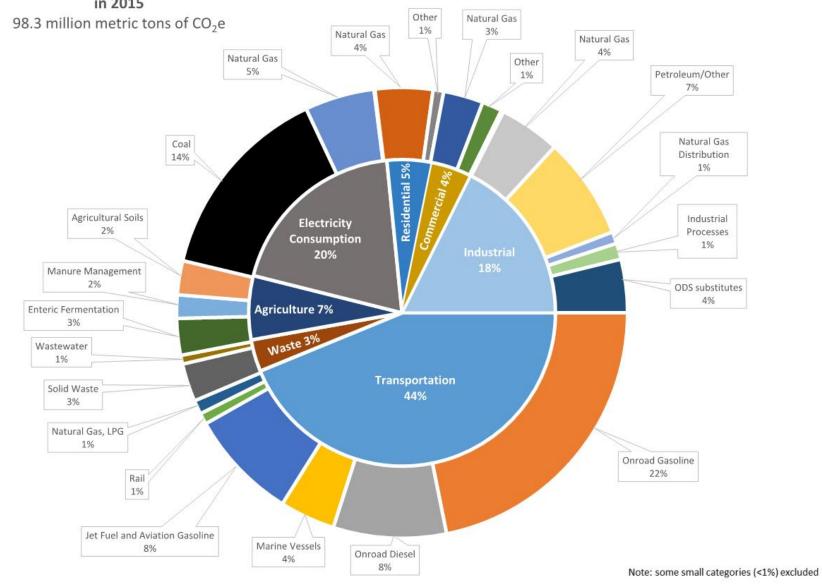
FORECASTED HIGH TODAY IN BOSTON, WITHOUT THE OCEANS

139 degrees F

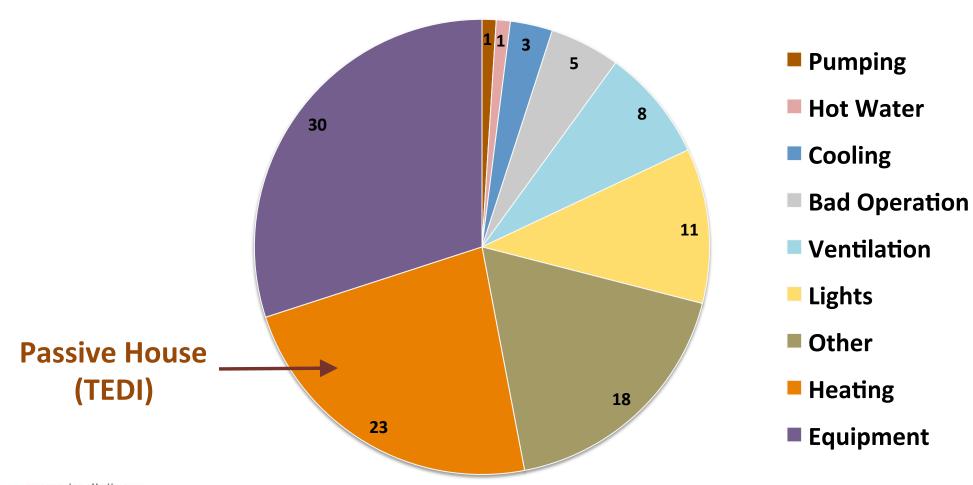
Source: IUCN (International Union for Conservation of Nature)


To limit warming to 2C, global emissions must fall more quickly if they peak later

Washington not on track to meet climate targets

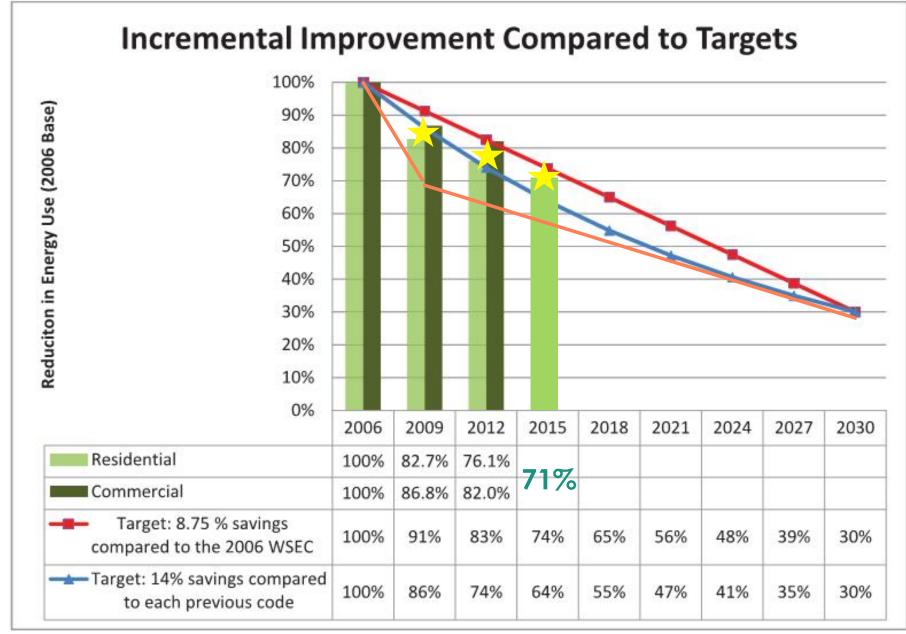

Greenhouse gas emissions (in millions of metric tons)

- ACTUAL EMISSIONS —— EMISSIONS TARGETS IN STATE LAW
- PROJECTED EMISSIONS UNDER CURRENT POLICIES



Absent a carbon tax of other new policies, Washington is projected to fail to meet greenhouse-gas reduction targets in state law. Source: Washington State Department of Ecology (Stephanie Redding / The Seattle... (Stephanie Redding / The Seattle Times) More V

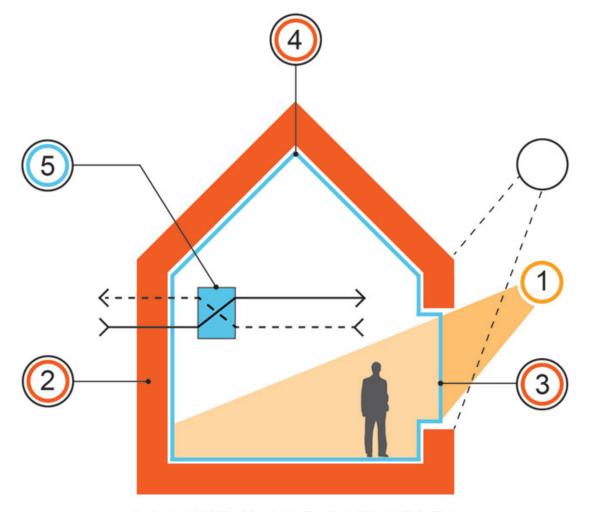
Washington Greenhouse Gas Emissions in 2015



Weighted End Use Energy (across building types)

Washington State Energy Code—

Q1 -


In today's political context, can we create and implement policies that:

PROVIDE ACTION QUICKLY,

AT A LARGE SCALE,

AND WITH EQUITY TO EVERYONE?

PASSIVE HOUSE IS A SOLUTION—

PASSIVE HOUSE PRINCIPLES

- SOLAR ORIENTATION
- 2 HIGH INSULATION
- 3 HIGH PERFORMANCE WINDOWS
- 4) AIR TIGHT ENCLOSURE
- 5 BALANCED VENTILATION WITH HEAT RECOVERY

Location – PHIUS +2015	kBTU/sf/yr heating	BTU/hr heating	kBTU/sf/yr cooling	BTU/hr cooling
Bellingham	5.9	4.0	1.0	4.4
Pasco	4.9	4.7	2.1	6.7
Pullman	6.2	4.6	1.0	5.6
Seattle-Tacoma	5.4	3.7	1.0	4.8
Seattle (Boeing)	5.1	3.7	1.0	5.6
Spokane	6.4	3.9	1.0	5.6
Walla Walla	5.0	4.5	2.1	6.6
Wenatchee	5.7	4.6	1.6	6.0
Yakima	5.8	4.6	1.2	6.0
Passivhaus Institut	4.75	3.17	4.75	3.17
EnerPHit	6.33* - 7.92**	-	4.75	-
PHI low-energy	9.50	-	4.75	-

^{*} Seattle ** Spokane

Modeling—

TABLE 2: Four-Story Multifamily Building Prototype Energy Modeling

Measure	EUI (kBTU/sf/yr)	kWh saved	% save	Heat Demand kBTU/sf/yr	Heat Load BTU/hr/yr	First Install Cost	kWh saved/\$		
Baseline	41.6			20.94	15.29				
Airtightness (CFM75) – NOTE: bold equals measures the achieved desired target range for code proposal									
0.25	36.7	48,897	11.8 %	14.81	10.76	\$7,491	6.5		
0.17	34.3	72,846	17.5 %	11.75	8.41	\$10,214	7.1		
0.15	33.7	78,833	19.0 %	10.95	7.79	\$11,576	6.8		
0.08	31.6	99,789	24.0 %	8.44	5.74	\$13,279	7.5		

TABLE 2: Four-Story Multifamily Building Prototype Energy Modeling

Measure	EUI (kBTU/sf/yr)	kWh saved	% save	Heat Demand kBTU/sf/yr	Heat Load BTU/hr/yr	First Install Cost	kWh saved/\$
Baseline	41.6			20.94	15.29		
Windows – U-value	0.25 baseline			-			
.16 glass	40.7	8,981	2.2 %	19.81	14.96	\$33,367	0.3
.12 glass	40.3	12,973	3.1 %	19.31	14.81	\$67,075	0.2

TABLE 2: Four-Story Multifamily Building Prototype Energy Modeling

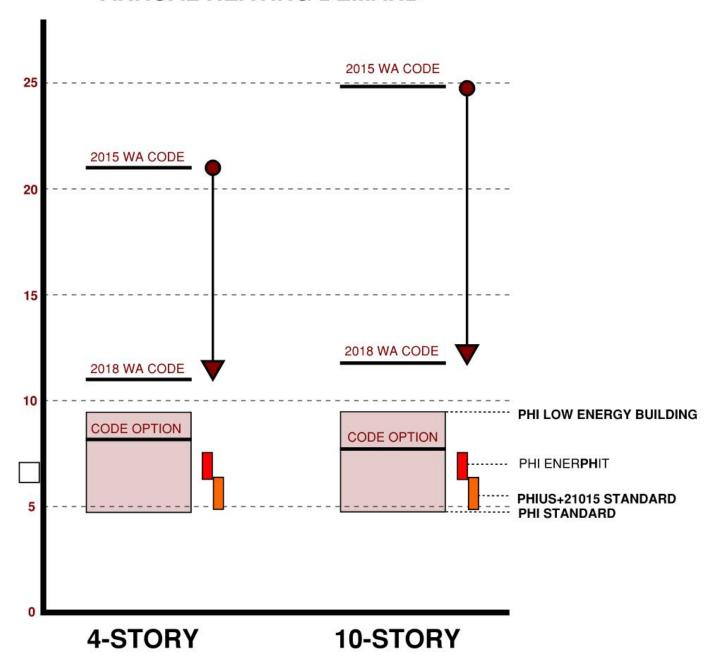
Measure	EUI (kBTU/sf/yr)	kWh saved	% save	Heat Demand kBTU/sf/yr	Heat Load BTU/hr/yr	First Install Cost	kWh saved/\$		
Baseline	41.6			20.94	15.29				
Heat Recovery Ventilation – baseline 0%									
60%	38.4	31,932	7.7 %	16.91	14.11	\$30,643	1.0		
70%	37.9	36,922	8.9 %	16.25	13.91	\$78,991	0.5		
80%	37.4	41,911	10.1 %	15.59	13.71	\$129,042	0.3		
90%	36.8	47,899	11.5 %	14.94	13.52	\$177,731	0.3		

TABLE 2: Four-Story Multifamily Building Prototype Energy Modeling

Measure	EUI (kBTU/sf/yr)	kWh saved	% save	Heat Demand kBTU/sf/yr	Heat Load BTU/hr/yr	First Install Cost	kWh saved/\$			
Baseline	41.6			20.94	15.29					
Wall Insulation (Eff	Wall Insulation (Effective) baseline R-17									
R-22	40.9	6,985	1.7 %	20.09	15.03	\$2,724	2.6			
R-25	40.7	8,981	2.2 %	19.75	14.93	\$3,405	2.6			
R-38	40.0	15,966	3.8%	18.88	14.67	\$7,491	2.1			

TABLE 2: Four-Story Multifamily Building Prototype Energy Modeling

Measure	EUI (kBTU/sf/yr)	kWh saved	% save	Heat Demand kBTU/sf/yr	Heat Load BTU/hr/yr	First Install Cost	kWh saved/\$
Baseline	41.6			20.94	15.29		
Roof Insulation – baseline R-38							
R-60	41.3	2,994	0.7 %	20.54	15.17	\$12,938	0.2


TABLE 2: Four-Story Multifamily Building Prototype Energy Modeling

Measure	EUI (kBTU/sf/yr)	kWh saved	% save	Heat Demand kBTU/sf/yr	Heat Load BTU/hr/yr	First Install Cost	kWh saved/\$
Baseline	41.6			20.94	15.29		
Heat Pump – baseline electric baseboard							
Ductless	31.6	99,789	24.0 %	20.54	15.17	\$203,267	0.5

TABLE 2: Four-Story Multifamily Building Prototype Energy Modeling

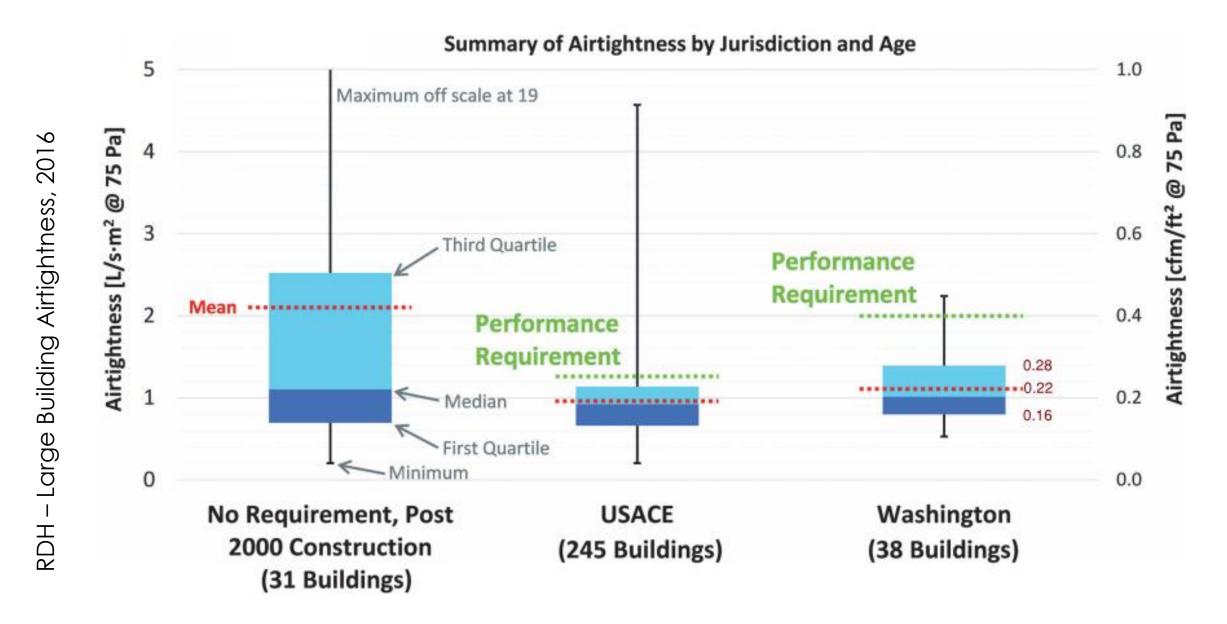
Measure	EUI (kBTU/sf/yr)	kWh saved	% save	Heat Demand kBTU/sf/yr	Heat Load BTU/hr/yr	First Install Cost	kWh saved/\$
Baseline	41.6			20.94	15.29		
Combinations	•		•				
.25 and 60%	33.7	78,833	19.0 %	10.98	9.58	\$38,134	2.1
.17 and 60%	31.5	101,785	24.5 %	8.09	7.23	\$40,858	2.5
.08 and 60%	29.0	125,734	30.3 %	5.05	4.56	\$43,922	2.9
.25 and R-22	36.1	54,884	13.2 %	14.0	10.51	\$10,214	5.4
.25 and R-25	35.8	57,878	13.9 %	13.66	10.41	\$10,895	5.3
.25 and R-38	35.1	64,863	15.6 %	12.83	10.15	\$14,981	4.3
.25 / 60% / R-22	33.0	85,819	20.7 %	10.2	9.33	\$40,858	2.1
.17 / 60% / R-22	30.8	107,772	26.0 %	7.35	6.97	\$43,581	2.5

ANNUAL HEATING DEMAND

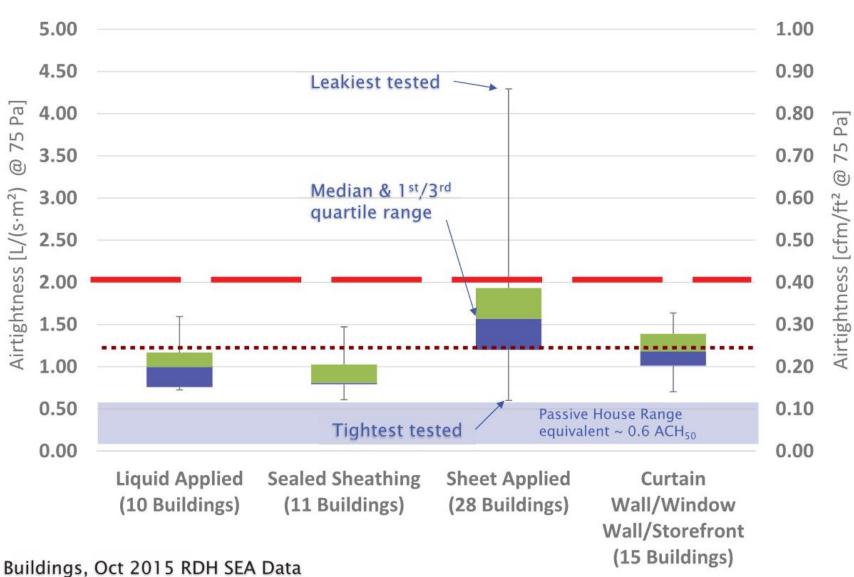
PARTNERS AND STAKEHOLDERS—

4-story MF		41.6	EUI		34,048	GSF		31	units
Code Baseline	Code Baseline 278,411		kWh		27.9	EUI		8,981	kWh / unit
	4	,664.58	Therms		13.7	EUI		150.5	Therms / unit
C402.5.1.2	Cost	/SF	Savings/SF	*C	ost/Unit	*Savings/Unit	Co	st/building	Savings/building
Air Sealing 0.25	\$	0.31	1.4	\$	338.28	1,577	\$	10,486.78	48,897
HRV 60%	\$	1.26	0.9	\$	1,383.89	1,030	\$	42,900.48	31,932
Combined	\$	1.57	2.3	\$	1,722.17	2,543	\$	53,387.26	78,833
				* i	ncludes co	mmon area			
C406.9	Cost,	/SF	Savings/SF	*C	ost/Unit	*Savings/Unit	Со	st/building	Savings/building
Air Sealing 0.17	\$	0.42	2.1	\$	461.30	2,350	\$	14,300.16	72,846
HRV 60%	\$	1.26	0.9	\$	1,383.89	1,030	\$	42,900.48	31,932
Combined	\$	1.68	3.0	\$	1,845.18	3,283	\$	57,200.64	101,785
Notes:	comb	bined er	nergy savings is l	owert	than addin	g individual sta	and alc	one measures	
	savir	ngs = kW	h savings						

10-story MF		45.2	EUI		85,120	GSF			79 units
Code Baseline		780,849	kWh		31.3	EUI		9,88	4 kWh / unit
	11	,831.68	Therms		13.9	EUI		149.	8 Therms / unit
C402.5.1.2	Cost	/SF	Savings/SF	*	Cost/Unit	*Savings/Uni	t	Cost/building	Savings/building
Air Sealing 0.25	\$	0.31	2.3		331.86	2,432		\$ 26,216.9	6 192,094
HRV 60%	\$	1.26	0.9	9	1,357.61	979		\$ 107,251.2	0 77,336
Combined	\$	1.57	3.1		1,689.47	3,347		\$ 133,468.1	6 264,441
				*	includes co	mmon area			
C406.9	Cost	/SF	Savings/SF	*	Cost/Unit	*Savings/Uni	t	Cost/building	Savings/building
Air Sealing 0.17	\$	0.42	3.4		452.54	3,632		\$ 35,750.4	9.
HRV 60%	\$	1.26	0.9		1,357.61	979		\$ 107,251.2	·
Combined	\$	1.68	4.1		1,810.15	4,453		\$ 143,001.6	0 351,756


ENV 046—

C402.5.1.2 Building Test
C403.2.2.1 Ventilation – Group R-2
C406.9 Reduced Air Infiltration


Proposal to Washington State Building Code Council 2018 Code Cycle

Air tightness—

Air Tightness in Large Commercial Buildings

Air Tightness in Commercial Buildings

ventilation—

Air Quality in Multifamily Buildings

Figure 4: Air quality differences between floors due to uneven airflow distribution

Cost effectiveness—

Office of Financial Management Olympia, Washington - Version: 2016-A Life Cycle Cost Analysis Tool

Executive Report

C402.5.1.2 - 4 STORY

4-STORY

\$132,652 net present savings

\$128,966 net present savings (0.17 CFM75)

Project Information		
Project:	4 Story, 31 Unit Multifamily	
Address:		
Company:		
Company: Contact:	Mike Fowler	
Contact Phone:		
Contact Email:		

Key Analysis	Building Characteristics			
Study Period (years)	51	Gross (Sq.Ft)	34,048	
Nominal Discount Rate	3.46%	Useable (Sq.Ft)	0	
Maintenance Escalation	1.00%	Space Efficiency	0.0%	
Zero Year (Current Year)	2018	Project Phase	0	
Construction Years	1	Building Type	0	

Life Cycle Cost Analysis	BEST					
Alternative	Baseline		Alt. 1		Alt. 2	
Energy Use Intenstity (kBtu/sq.ft)	 41.6	-91	33.7	100.5	36.1	
1st Construction Costs	\$ -	\$	52,375	\$	52,375	
PV of Capital Costs	\$ (5)	5	92,513	\$	92,513	
PV of Maintenance Costs	\$ 12	\$	10,548	5	10,548	
PV of Utility Costs	\$ 1,006,525	\$	770,812	\$	841,507	
Total Life Cycle Cost (LCC)	\$ 1,006,525	\$	873,873	\$	944,568	
Net Present Savings (NPS)	 N/A	5	132,652	5	61,956	

Societal LCC takes into consideration the social cost of carbon dioxide emissions caused by operational energy consumption

(GHG) Social Life Cycle Cost			BEST			
GHG Impact from Utility Consumption		Baseline		Alt. 1		Alt. 2
Tons of CO2e over Study Period		7,111		5,456		5,952
% CO2e Reduction vs. Baseline		N/A		23%		21%
Present Social Cost of Carbon (SCC)	\$	438,520	\$	336,428	\$	367,047
Total LCC with SCC	\$	1,445,045	\$	1,210,301	\$	1,311,616
NPS with SCC		N/A	5	234,744	\$	133,429

10-STORY

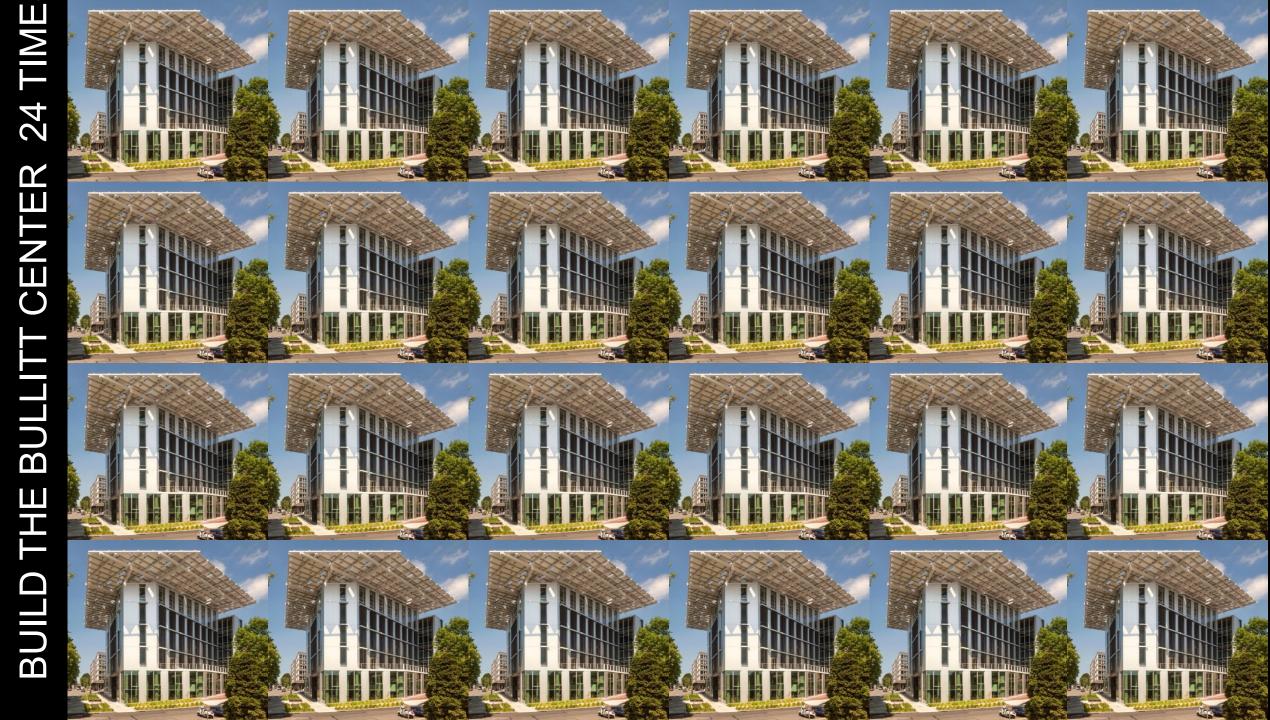
\$548,952 net present savings

\$800,746 net present savings (0.17 CFM75)

Essential step to 70% goal—

ENERGY SAVINGS

4-story multifamily prototype	w/ C406
19% reduction in building energy use	24%
47% reduction in annual heating demand	61%
37% reduction in peak heating load	52%


10-story multifamily prototype	w/ C406
23% reduction in building energy use	31%
53% reduction in annual heating demand	70%
39% reduction in peak heating load	57%

examples—

< 0.08 CFM75 and heat recovery ventilation

HILLSBORO, OR

PHASE 1 57 UNITS 57,759 SF

22.5 EUI MODELED 20.9 EUI ACTUAL

PHASE 2 58 UNITS 49,900 SF

22.2 EUI MODELED

FIRST PLEDGED PROJECT

BUILDING CHALLENGE

4 STORIES 35 UNITS 20,100 GSF 18.5 EUI kBTU/sf/yr NET ZERO READY

PAX FUTURA

by NK Architects and Cascade Built COLUMBIA CITY, SEATTLE

THE GOAL:

20 PASSIVE HOUSE PROJECTS
OF 20,000 SQUARE FEET OR LARGER
UNDER CONSTRUCTION IN KING COUNTY BY YEAR 2020

ENCOURAGE LOCAL JURISDICTIONS TO:

- 1. PURSUE PASSIVE HOUSE FOR THEIR OWN PROJECTS, AND
- 2. CREATE INCENTIVES FOR PASSIVE HOUSE DEVELOPMENT

PLEDGE PROJECTS ON WWW.PHNW.ORG

320 QUEEN ANNE


6 STORIES 59 UNITS 42,000 GSF

17 EUI (estimate)

SEATTLE, WA

11TH AND REPUBLICAN

4 STORIES NEW and RENOVATION

20 UNITS 18,700 GSF

NET ZERO ENERGY

SEATTLE, WA

Achievable —

Comfort and health —

Cost effective —

Energy savings —

WASHINGTON CODE PROCESS – TIMELINE:

Technical Advisory Group (TAG)

July 13, 2018

Mechanical Ventilation Energy Committee (MVE)

September 13, 2018

State Building Code Council (SBCC) Public Hearing

November 2018

State Legislature

Spring 2020

