## PASSIVE HOUSE IN STUDENT HOUSING



#### WILLIAMS + WHEATON COLLEGE

PHIUS NAPHC 2018



ARCHITECTURE | PLANNING INTERIOR DESIGN | VDC BRANDED ENVIRONMENTS ARCHITECTURE | PLANNING INTERIOR DESIGN | VDC BRANDED ENVIRONMENTS BOSTON 200 HIGH ST, FLOOR 2 BOSTON, MA 02110 NEW YORK 54 W 21ST ST, SUITE 804 NEW YORK, NY 10010 SGA-ARCH.COM 857.300.2610

## **SGA** WHO WE ARE

#### **EXPERTS IN DESIGN FOR**

- HIGHER EDUCATION FACILITIES
- CORPORATE OFFICE BUILDINGS
- CORPORATE INTERIORS
- CUTTING EDGE VIRTUAL DESIGN STUDIO



JACOB HIGGINBOTTOM DIRECTOR OF HIGHER EDUCATION STUDIO



ANDREW STEINGISER PROJECT ARCHITECT, CPHC



MICHAEL PULASKI PHIUS AND ENERGY CONSULTANT

THORNTON TOMASETTI

## **PROJECT CONTEXTS**

IN 2017 SGA WAS HIRED TO:

#### WILLIAMS COLLEGE GARFIELD HOUSE

- Design 40 beds of student housing with aggressive energy performance EUI 28.
- Assist in decision to renovate existing 1850 residence hall or demolish and build new.
- Considered "deep energy retrofit"
- Design a project that feels like a "home" and not a residence hall.
- PHIUS was brought in by consulting team as a metric for consideration to advance college energy performance standards.
- Certify the project with USGBC as LEED GOLD
- Design a building contextual with surrounding residential neighborhood
- Integrate the building with the surrounding landscape.



## **PROJECT CONTEXTS**

IN 2017 SGA WAS HIRED TO:

#### WHEATON COLLEGE RESIDENCE HALL

- Provide the maximum number of beds allowed by budget.
- Design a contextual solution fitting in the lower campus 1950's architecture.
- Decide fate of existing dorm at the site to renovate or demolish.
- Design a PHIUS certified building for maximum energy savings.
- No LEED certification pursued.
- Create a building that completes the quadrangle of first year student housing and offers a sense of community to this part of campus.
- Integrate a multi-purpose space for first year student orientation and gatherings.
- Design a brick clad building to fit in with surrounding buildings.



#### **STATISTICS - 2 CASE STUDIES IN PASSIVE HOUSE FOR STUDENTS**



#### WILLIAMS COLLEGE GARFIELD HOUSE

- Wood framed construction with HardiPlank siding
- Traditional contextual design
- 2.5 story 40 bed residence hall
- Scheduled occupancy fall 2019
- Suite style living arrangement (6 students/group/bath)
- No active cooling

| Building area | Construction cost | Cost/SF  | Total beds | Area /Student | Cost/ Bed | Design EUI |
|---------------|-------------------|----------|------------|---------------|-----------|------------|
| 16,500 gsf    | \$9.5M            | \$575.00 | 40         | 413 SF/bed    | \$237,500 | 28.2       |



#### WHEATON COLLEGE RESIDENCE HALL

- Steel frame/ precast plank construction & brick veneer
- Modern contextual design (1950's campus)
- 3.5 story 178 bed residence hall
- Scheduled occupancy fall 2019
- Wing style living arrangement (30 students/Wing/bath)
- Cooling provided

| Building area | Construction cost | Cost/SF  | Total beds | Area /Student | Cost/ Bed | Design EUI |
|---------------|-------------------|----------|------------|---------------|-----------|------------|
| 45,000 gsf    | \$21.5M           | \$466.00 | 178        | 253 SF/bed    | \$120,800 | 26.6       |

#### **PROJECT SITES**

- Suburban site
- Orientation predetermined
- Expressed connections to nature

#### WILLIAMS







WHEATON





SGA COMMUNICATING. COLLABORATING. CREATING

#### **PLAN LAYOUTS**

#### WILLIAMS COLLEGE GARFIELD HOUSE

Suite style arrangement 6 students/bath







#### WILLIAMS

#### **EXPRESSED CONNECTION TO NATURE**

SGA COMMUNICATING. COLLABORATING. CREATING

NAPHC 2018 9/22/18 | 8



#### WHEATON

#### **EXPRESSED CONNECTION TO NATURE**

SGA COMMUNICATING. COLLABORATING. CREATING

NAPHC 2018 9/22/18 | 9

## **PASSIVE HOUSE DESIGN COMPONENTS - ROOMS**



### PASSIVE HOUSE DESIGN COMPONENTS - ROOMS





WHEATON COLLEGE

#### **ENVELOPE**



ROOF: R-60 WALLS: R-38 SLAB: R-20 THERMAL MASS PHASE CHANGING MATERIAL

**WILLIAMS** 





ROOF: R-50 WALLS: R-32 SLAB: R-20 FLEX SPACE OUTSIDE PH

**WHEATON** 



2'-3 1/4" F.O.B

PARAPET FLASHING, COLOR TYPE M1

SGA COMMUNICATING. COLLABORATING. CREATING

### **GLAZING AND SHADING**



#### WOOD VS. STEEL - WHEATON COLLEGE



#### WOOD VS. STEEL - WILLIAMS VS. WHEATON





#### WILLIAMS:

- NO ADDITIONAL STRUCTURE BEYOND WOOD STUDS
- MORE FLEXIBLE STRUCTURE/OPENINGS CAN BE FIELD MODIFIED
- THERMALLY BROKEN Z-GIRTS ONLY PENETRATION IN RAINSCREEN

#### WHEATON:

- NEED TO COORDINATE STEEL COLUMNS IN PLAN WITH PARTITIONS
- COMPLICATED SLAB EDGE DETAIL WITH UPSET STEEL FOR HEADROOM
- STEEL/PLANK NEED TO BE CLOSELY COORDINATED, INCLUDING WITH HVAC FOR ALL PENETRATIONS
- THERMALLY BROKEN BRICK TIES, RELIEVING ANGLES AND Z-GIRTS

**Passive House Design Features** 



**High Performance Ventilation** 

#### ERV Efficiency 84%

- Swegon Unit
- Must be AHRI/ PHI Certified

#### Intermittent Bathroom Vent

 Saves 400 CFM of Exhaust = 4% site EUI savings

#### **Balanced Ventilation Design**

 Limit Exhaust only systems (Trash room)

#### Laundry Rooms

Through wall make up air

# HROUGE **ERV** 3E SP0 200 CPM ... 📮

EXHAUST AIRFLOW DIAGRAM

Use Demand Control Ventilation in Living Room **Fhornton Tomasetti** 

#### **Drainwater Heat Recovery**



55 kW PV Array 48,000 kwh/year



**Thornton Tomasetti** 

Energy Analysis - Energy Use Intensity Breakdown by Design Case



# Passive House Analysis

**Passive House Model Results** 



**Energy Recovery Ventilation Unit Efficiency** 



#### Ventilation Analysis



Thornton Tomasetti



**PCM Mats** 

• 16" wide x 48" long

#### **Passive House Cost Analysis**



**Thornton Tomasetti** 





High Performance HVAC Systems



HVAC System Selection



|           | Central Plant                   | Distribution |
|-----------|---------------------------------|--------------|
| Option 1A | Geothermal                      | Valance Unit |
| Option 1B | Geothermal                      | FCU          |
| Option 2A | VRF                             | VRF          |
| Option 3A | Geothermal (back up boiler)     | Valance Unit |
| Option 3B | Geothermal (back up boiler)     | FCU          |
| Option 4  | Air-to-Water Heat Pump (Boiler) | Valance Unit |
| Option 4A | Air-to-Water Heat Pump (Boiler) | FCU          |
| Option 4B | Air-to-Water Heat Pump (Steam)  | Valance Unit |
| Option 4C | Air-to-Water Heat Pump (Steam)  | FCU          |

Energy Use Intensity Breakdown by Design Case



ENERGY USE BREAKDOWN BY DESIGN CASE

Energy Analysis



Thornton Tomasetti

Energy Use Intensity Breakdown by End Use



Site Energy Comparison (EUI)



BUILDING ENERGY USE INTENSITY (EUI) COMPARISON

Site Energy Comparison (Per Person)



BUILDING ENERGY USE PER PERSON COMPARISON

# Passive House Analysis

Model Results Against PH Thresholds



#### **Passive House Boundary**



- Excluding First floor (flexible space)
- Separate metering: electric, chilled water, hot water, DHW
- Separate Ventilation (AHU)
- Separate Air Barrier



#### **Cost Analysis for Passive House**



**Thornton Tomasetti** 

#### **WUFI Passive Model Inputs**

| WUFI Passive Model Input Parameter    |                                                                                        |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| Building Envelope                     |                                                                                        |  |  |  |
| Roofs Construction                    | Assembly R-50 (U-0.02)                                                                 |  |  |  |
| Walls (Above Grade)                   | Assembly R-32 (U-0.02)                                                                 |  |  |  |
| Ground Floor                          | R-20 (U-0.05)                                                                          |  |  |  |
| Building Shell Area Infiltration      | 0.05 CFM/SF @ 50 Pascal's (PASSIVE HOUSE LEVEL)                                        |  |  |  |
| Glazing U-factor (Punch windows)      | Assembly U-0.20                                                                        |  |  |  |
| Glazing U-factor (Curtainwall)        | Assembly U-0.17                                                                        |  |  |  |
| Vertical Glazing SHGC (Punch windows) | 0.378                                                                                  |  |  |  |
| Vertical Glazing SHGC (Curtainwall)   | 0.20                                                                                   |  |  |  |
| Shading Devices                       | Horizontal overhangs on SW and W facades                                               |  |  |  |
| HVAC (Air-Side)                       | Proposed Case                                                                          |  |  |  |
| HVAC Systems                          | Campus steam (hot water), WSHP/Dry Cooler (chilled water), Valance unit (distribution) |  |  |  |
| Outside Air System                    |                                                                                        |  |  |  |
| Ventilation Supply Air / Exhaust Air  | 4060 CFM / 4060 CFM                                                                    |  |  |  |
| Heat Recovery Device Type             | Enthalpy Wheel 82% Effectiveness                                                       |  |  |  |
| Domestic Water Heating                | Proposed Case                                                                          |  |  |  |
| Heater Fuel                           | Condensing Gas boiler (95% efficient)                                                  |  |  |  |
| HW Demands                            | 12 gallons/person/day                                                                  |  |  |  |
| HW controls                           | Low flow fixtures, drain water heat recovery on showers                                |  |  |  |
| Lighting                              | Proposed Case                                                                          |  |  |  |
| Lighting Power Density (LPD)          | 47682 kWh/yr (0.3 W/SF)                                                                |  |  |  |
| Miscellaneous                         | Proposed Case                                                                          |  |  |  |
| Miscellaneous equipment               | 52659 kWh/yr                                                                           |  |  |  |
| Photovoltaic Panels                   |                                                                                        |  |  |  |
| Generation (potential)                | 139,000 kWh                                                                            |  |  |  |

## **Lessons Learned**

**Design Guidelines** 

- Glazing <40% wall area for most cost effective PH design.
- Overheating High SHGC glazing can cause overheating, use external shading cleverly.
- Curtainwall Large glazed areas overheat quickly so limit to specific areas and provide shading
- Ventilation Align ventilation calcs with MEP early, as they greatly impact heating/ cooling demand, energy
- ERVs specify systems with high efficiency 84%+ Efficiency (Sensible heat recovery)
- Heating keep it simple. You don't need much.
- Cooling typically required, and can be a large energy consumer, so explore passive cooling (high thermal mass, phase change materials natural ventilation).
- Domestic Hot Water (DHW) use drainwater heat recovery wherever possible.
- Thermal Bridging eliminate thermal bridging concerns to the greatest extent possible, while using cost effective solutions

ARCHITECTURE | PLANNING INTERIOR DESIGN | VDC BRANDED ENVIRONMENTS BOSTON 200 HIGH ST, FLOOR 2 BOSTON, MA 02110 NEW YORK 54 W 21ST ST, SUITE 804 NEW YORK, NY 10010 SGA-ARCH.COM 857.300.2610

## THANK YOU. NAPHC 2018