
Update on Nearly Zero Energy Building (NZEB) Development in China Standard, Policy and Case Studies

Xi Chen, Jianlin Wu Institute of Building Environment and Energy, CABR Sep. 21, 2018

NZEB worldwide

In China

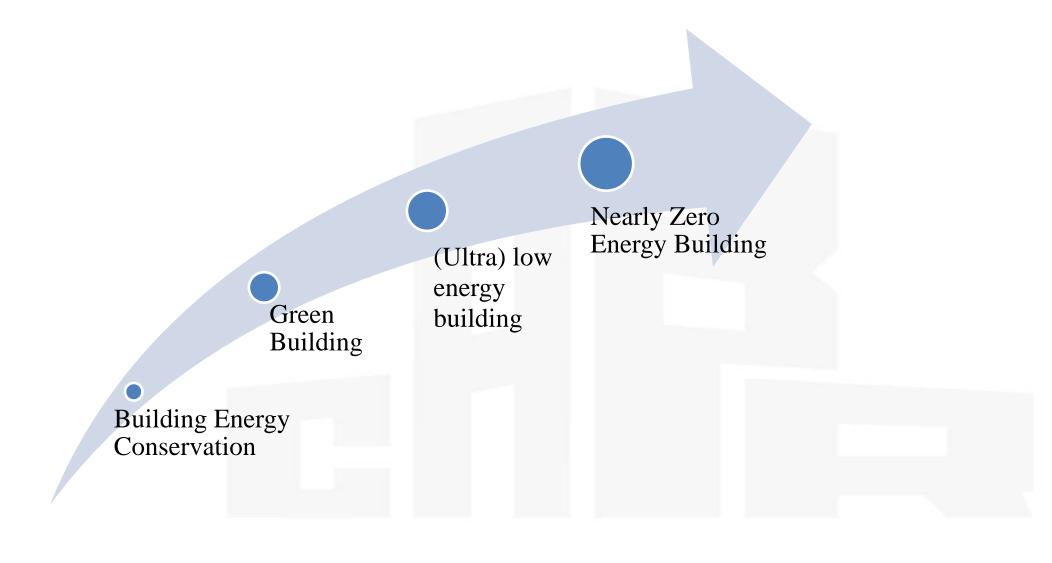
Hamburg city exhibition building at Shanghai Expo 2010

Riverside Apartment in Qinhuangdao, Hebei Province

CABR Nearly Zero Energy
Building, Beijing

Outline

- 1. Standards and code
- 2. Policy and incentive
- 3. Study on NZEB best practice
- 4. Other related work


Outline

1. Standards and code

- 2. Policy and incentive
- 3. Study on NZEB best practice
- 4. Other related work

Standards and code

Development of ULEB and NZEB standards and code in China

- (1) Learn from development paths and experience from US and European countries. Adapted to China's BEE status, climate zone, building type, occupants behavior etc. Develop standard and code for ultra-low-energy and nearly zero-energy building with Chinese characteristics.
- (2) Progressive promotion of nearly zero-energy buildings from 2015. Definition: low-energy building, ultra-low-energy building, nearly-zero-energy building, net-zero-energy building.
- (3) Different indicator system for public and residential buildings.

Standard and code

MOHURD issued Technical Guideline for Passive Ultra-Low-Energy Green Buildings

初音	
第一章总则	
第二章技术指标	
第三章设计	
(一)以气候特征为引导的建筑方案设计7	
(二)高性能的建筑保温系统和门窗8	
(三) 无热桥设计12	
(四) 建筑气密性设计	
(五) 進阳设计	
(六) 高效新风热回收系统	
(七)辅助供暖供冷系统25	
(八)卫生间和厨房通风	
(九) 照明与计量27	
第四章施工与质量控制	
(一) 无热桥施工29	
(二) 气密性保障31	
(三) 设备系统	
第五章验收与评价34	
(一)验收34	
(二) 评价	
第六章运行管理	
附录 A 一次能源换算系数40	
附录 B 建筑外围护结构整体气密性能检测方法41	

Standards and code

National standard "Technical Standards for Nearly Zero-Energy

Buildings"

- Compiled by 50 agencies.
- Public buildings+Residential buildings
- Covering design, construction, operation and evaluation.
- Launched in Jul 2017
- Currently open for comments
- To be published in Dec 2018.

Provincial and city-level ULEB code

- ♦ Hebei: Passive Low Energy Residential Building Energy Efficiency Design Code-2015
- **♦** Shandong: Passive Low Energy Residential Building Energy Efficiency Design Code-2016
- **♦ Qingdao: Passive Low Energy Building Energy Efficiency Technical Guileline-2015**
- **♦** Hebei: Specification for Construction and Acceptance of Passive Low Energy Buildings-2017
- ◆ Hebei Passive Low Energy Public Building Energy Efficiency Design Code-2018
- ◆ Beijing Ultra Low Energy Building Energy Efficiency Design Code-2018
- **◆** Topics: fundamentals, index, design, construction, O&M, evaluation, pilots
- **♦** Research period: 2017-2010
- **♦** National Science and Technology Demonstration Project

Technical requirement for ULEBs in China

I Residential building

	Severe Cold	Cold	Hot summer and cold winter	How summer and warm winter	Mild			
Enongy	Annual heating load (kWh/m²a)	≤18	≤15		≤5			
	Annual heating load (kWh/m²a)	$\leq 3.5 + 2.0 * WDH_{20} + 2.2 * DDH_{28}$						
Energy	Primary energy consumption (for heating, cooling and lighting)	≤60kWh/m²a (or 7.4kgce/m²a)						
Air tightness	N ₅₀ (Air exchange rate under 50Pa)			≤0.6				

WDH20 (Wet-bulb Degree Hour 20): accumulation of the difference between the wet-bulb temperature and 20oC when the wet-bulb temperature is above 20oC in a year.

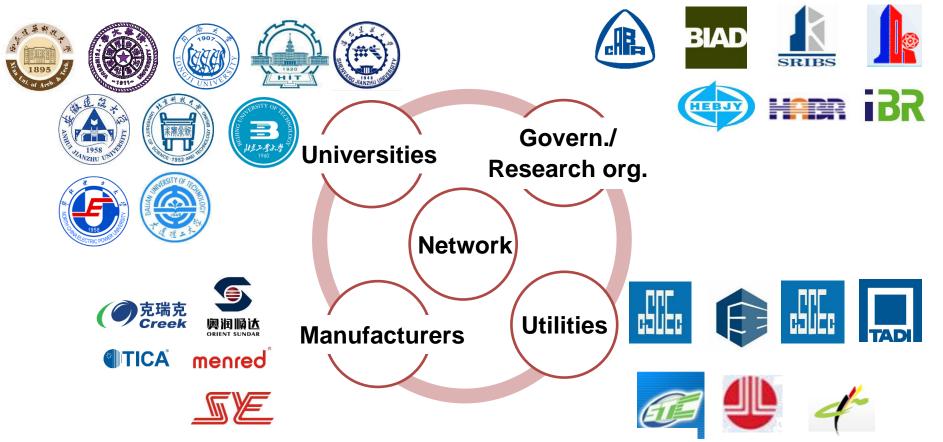
DDH28 (Dry-bulb Degree Hour 28): accumulation of the difference between the dry-bulb temperature and 28oC when the dry-bulb temperature is above 28oC in a year.

II Public building

Energy: additional saving of 60% vs. reference building conforming to national BEE standard

Airtightness: N50 < 1.0

Key R&D Plan of "13th FYP"


"Technological System and Key Technologies for Nearly Zero-Energy Buildings"

- **◆ 120 Million RMB Research Fund**
- **♦** Led by CABR, Participated by 29 agencies
- **◆** Topics: fundamentals, index, design, construction, O&M, evaluation, pilots
 - **♦** Research period: 2017-2010
 - **♦** National Science and Technology Demonstration Project

Standards and code

Key R&D Plan of "13th FYP"

"Technological System and Key Technologies for Nearly Zero-Energy Buildings"

Funding Amount: USD 19.5 million

Standards and code

Basic Theory

Topic 1 Fundamentals

Technical Strategies

Topic 2 Definitions & technical requirements

Key technologies & products

Topic 3 Passive technologies & products

Topic 4 Active technologies & products

Topic 5 Renewable energy technologies & products

Design, Construction & test

Topic 6 Design methods & tools

Topic 7 Construction technologies

Topic 8 Test & Evaluation technologies

Pilot Projects

Topic 9 Demonstration for residential buildings

Topic 10 Demonstration for public buildings

Outline

1. Standards and code

- 2. Policy and incentive
- 3. Study on NZEB best practice
- 4. Other related work

Policy and incentive

13th Five-Year-Plan for Development of Energy Efficient Building and Green Buildings

"Carry out ultra-low-energy building and nearly zero-energy building construction pilot projects. By 2020, over 10 million m² of ultra-low-energy buildings and nearly zero-energy buildings shall be constructed. Encourage zero-energy building and positive energy building pilot projects."

2

13th FYP for Housing and Urban-Rural Construction

"Construct ultra-low-energy or nearly zero-energy demonstration buildings in areas with different weather conditions as soon as possible to let building energy efficiency become models and play the leading role."

[&]quot;Launch ultra-low-energy community pilot project."

3

Hebei: Provincial and Municipal Policies

Provincial:

1,000,000 m² of ultra-low-energy building constructed by 2020 Subsidy of RMB 3,000,000 for ultra-low-energy pilot projects. Subsidy of RMB 600/m² for pilot building renovated according to ultra-low-energy standard.

City of Shijiazhuang & Baoding:

200,000/Mu discount of land acquisition cost for ultra-low-energy buildings in down-town area.

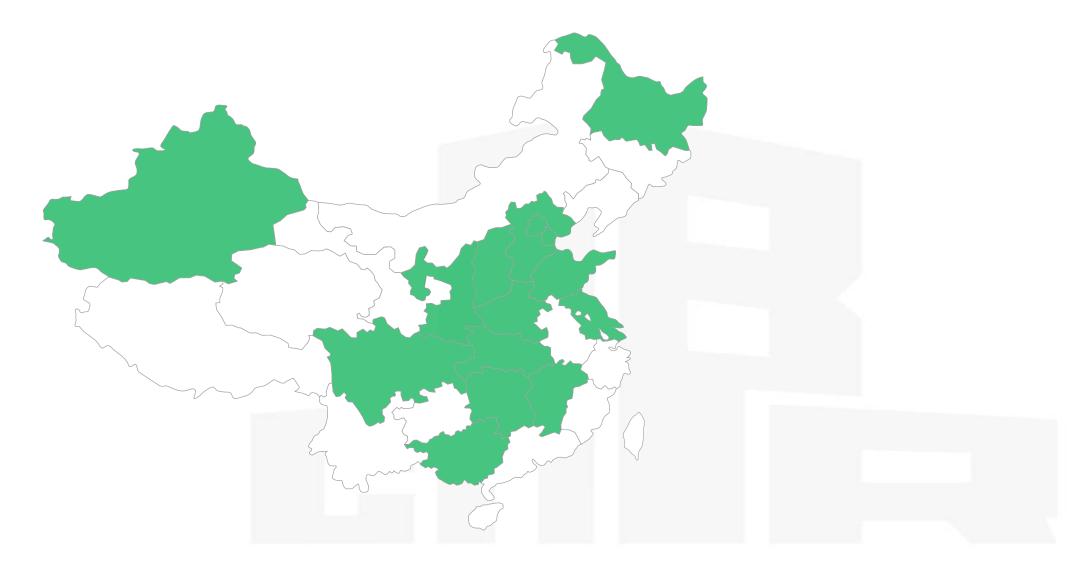
Extra 9% of above-ground buildable floor area.

Sale price cap raised by 30%.

Subsidy of RMB 300/m² for ultra-low-energy pilot projects.

Beijing: Action plan for the development of ultra low energy building (2016-2018)

No less than 300,000 m² of ultra-low-energy demonstration buildings shall be constructed from 2016-2020, among which, at least 200,000 m² will be supported by government fund.


Subsidy level: 2016-1000 RMB/m², 2017-800 RMB/m², 2018-600 RMB/m² Promote large-scale development of ultra-low-energy buildings in ecological demonstration zones like city center.

Shandong: Fund for building energy efficient and green buildings

Provide financial incentives for passive ultra-low-energy buildings based on incremental costs. The thresholds for residential and public buildings are $5000\,\text{m}^2$ and $3000\,\text{m}^2$ respectively.

Policy and incentive

Provinces with supporting policy for ultra low energy building

- 1. Standards and code
- 2. Policy and incentive
- 3. Study on NZEB best practice
- 4. Other related work

Early results of national pilot projects

Name	Location	Туру	Climate	Floor Area (m²)	Occupancy	Target	Real Energy Consumption or Calculated Energy Consumption
VELUX Office Building	Langfang	Public	Cold	2014	Full	Active House	Energy Efficiency 75%
Happy Castle Commercial Building	Urumchi	Public	Severely Cold	4520	Partial	Passive House	Cumulative Heating Load: 19kwh/m²·a
CABR Demonstratio n Building	Beijing	Cold	Cold	4025	Full	NZEB	Disclosed Energy Consumption 23kwh/m²·a* (real-time)
Landsea Brooker Hotel	Huzhou	Public	Severely Cold	2445	Intermittent Use	Passive House	Cumulative Heating Load 15kwh/m²·a Cumulative Cooling Load 31kwh/m²·a
Riverside	Qinhuangda o	Residenti al	Cold	28050	Small Part	Sino- Germany Cooperation Low-Energy	Cumulative Heating Load≤15kwh/m²·a
Xishutingyua n B4	Harbin	Residenti al	Severely Cold	7800	Small Part	Sino- Germany Cooperation Low-Energy	Cumulative Heating Load≤15kwh/m²·a

^{*}Energy consumption of heating, air-conditioning and lighting

建筑环境与节能研究院 Institute of Building Environment and Energy Efficiency

Study on NZEB best practice

Sichuan Office Building China New Building Huagou Nearly Zero-Energy Demonstration Building 13,078 m²

Hebei Residential Building Train City 340,000 m

Tianjin Residential Building Ecological City Passive Houses 14,000 m

Beijing Office Building CABR Nearly Zero-Energy Demonstration Building 4,200 m²

Henan School Menred Nearly Zero-Energy Experience Center

Zhuhai Exhibition Center Gree Nearly Zero-Energy Experience Center

Shandong School Shandong Urban Construction Vocational College Experiment and Training Center 20,383 m²

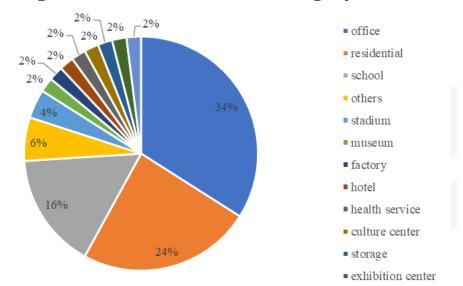
Shandong Excibition Building Qingdao Ecological Park Passive House Experience Center 10,000 m²

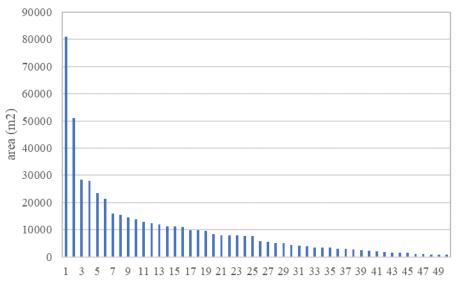
Wenzhou, Zhejiang Office Building Menred Nearly Zero-Energy Experience Center

Collection of Best Practice of ULEB/NZEB in China

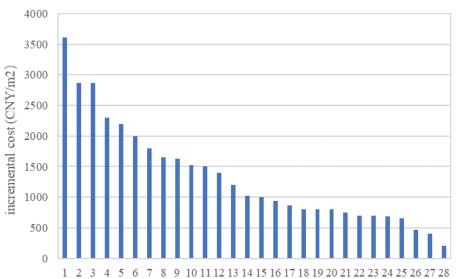
中国超低/近零能耗建筑 最佳实践案例集

中国被动式超低能耗離乳联型 China Passive Building Alliance


- Compiled by 33 Institution, developer and agencies.
- Information of 50 NZEB pilot projects.
- Published in late July, 2017.
- First Chinese ULEB Open House in Sep. 2017.


Hot Summer Warm Winter 8% Hot Summer Cold 10% Cold Winter 12% Cold, 70%

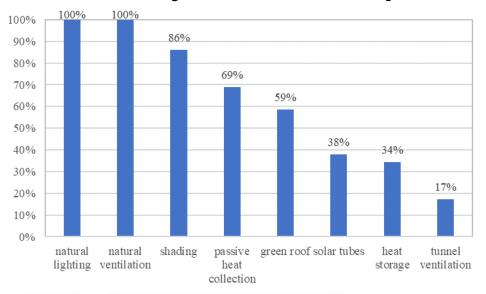
Percentage of ULEB demonstration buildings by climate zone

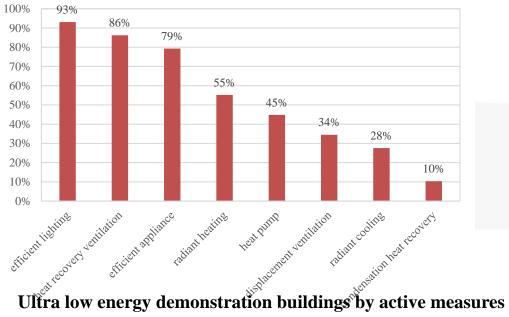


Percentage of ULEB demonstration buildings by building type

Study on NZEB best practice

Ultra low energy demonstration buildings by area

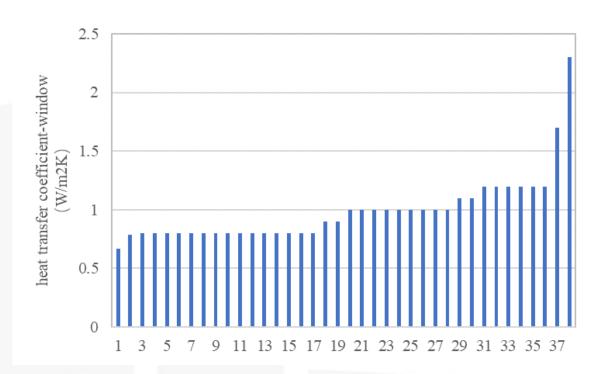

Ultra low energy demonstration buildings by incremental cost



Average incremental costs by system of technical measures for ULEB demonstration buildings

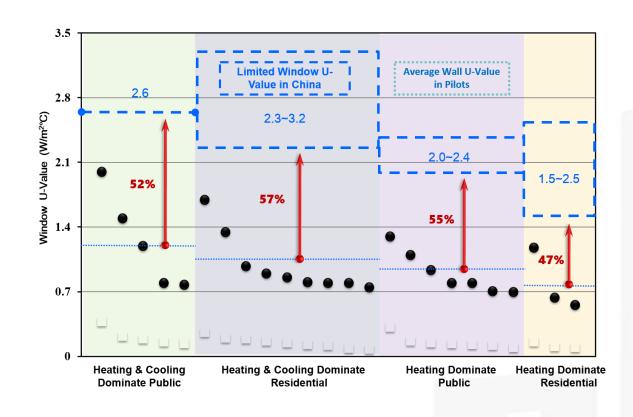
Study on NZEB best practice

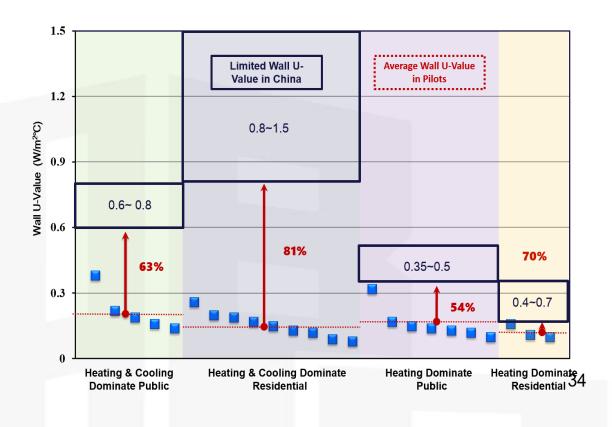
Ultra low energy demonstration buildings by passive measures



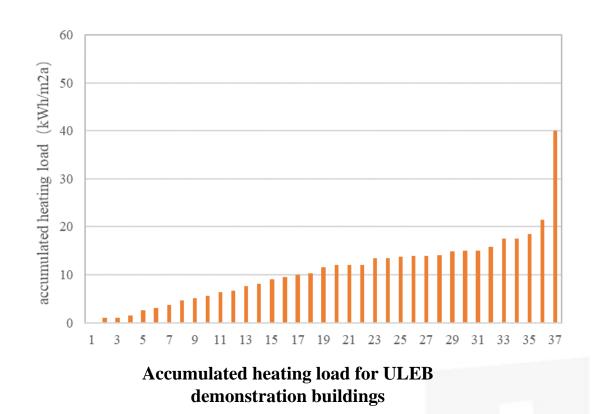
Heat transfer coefficients roof and wall for ULEB demonstration buildings

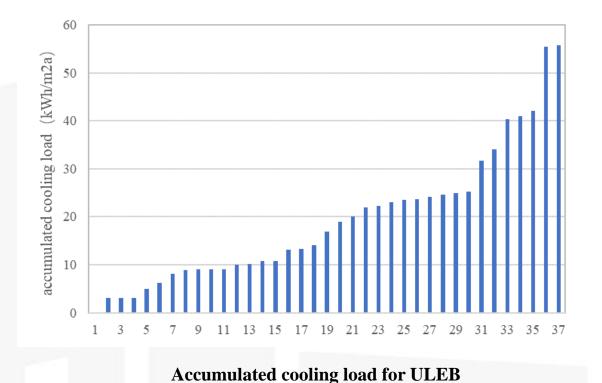
Roof & Wall:


- Heat transfer coefficient adopted smaller heat transfer coefficient than the code limit.
- Most roof/wall below 0.15W/m²K, only about 35% of the code limit.



Heat transfer coefficients of windows for ULEB demonstration buildings


Windows:


- Lower transfer coefficient and higher SHGC than the code limit.
- Triple-pane windows, K value below 1.2W/m²K, code limit: 2.0~2.5/m²K

The gap between the best practices and the building codes now is the future trend of China building codes revision.

demonstration buildings

- Accumulated heating load of most ULEB demonstration projects are below 15kWh/m2.a, in line with passive house criteria.
- Accumulated cooling load given in the figure 16 range from 3 to over 50 kWh/m2a, varying with climate zones with different cooling and dehumidification demand.

Outline

- 1. Standards and code
- 2. Policy and incentive
- 3. Study on NZEB best practice
- 4. Other related work

MOHURD Testing on Ultra-Low-Energy Buildings

Nearly Zero Energy Building Label

Nov. 2016: 17 projects

一批被动式超低能耗评价标识项目

翠成经济适用房4期

Dec. 2018: 30+ projects upcoming

2017年被动式超低能耗建筑评价标识项目

根河市城市管理中心

(幼儿园) 根河市

根河市城市管理行政执法局

燕赵华府住宅小区项目

高碑店 高礎店市恒荣房地产开发

有限公司

Nov. 2017: 14 projects

北京科净源K20园区

3#、11#、13#楼

比京科净源技术开发有限公司

聊城一中图书馆

青岛市公用设计院

太原

翠谷园配建1-展示中心

天津津城华新置业有限公司

高碑店市中誉房

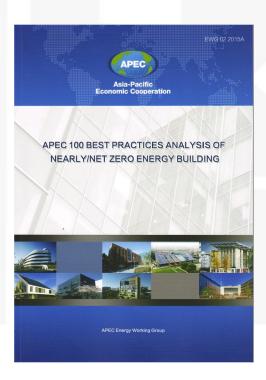
China-US Clean Energy Research Center Program Phase 1.0-2.0 (2012-2020)

Partners

CERC demonstration project: China Academy of Building Research – Nearly Zero Energy Building

China-Germany Passive Building Technology Cooperation

- **♦**China-Germany Ecological Park
- **♦MOHURD International Science & Technology Cooperation—Passive Buildings**
- **♦**China-EU Nearly Zero-Energy Building Seminar



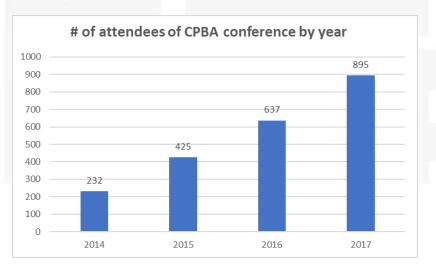
APEC Nearly/Net Zero Energy Building Program (2012-2020)

Program under APEC energy working group, 52 experts from 43 research institutes in 21 economies of APEC

- Phase I (2013-2014) Research on policies and standards for APEC nearly zero-energy buildings
- Phase II (2016-2016) Research on typical projects and best cases of APEC nearly zero-energy buildings
- Phase III (2017-2018) Research on the roadmap of APEC nearly zero-energy buildings

China National NZEB Conference (CPBA)

1st national NZEB conference, Gaobeidian, Shandong Province


2nd national NZEB conference, Qingdao, Shandong Province

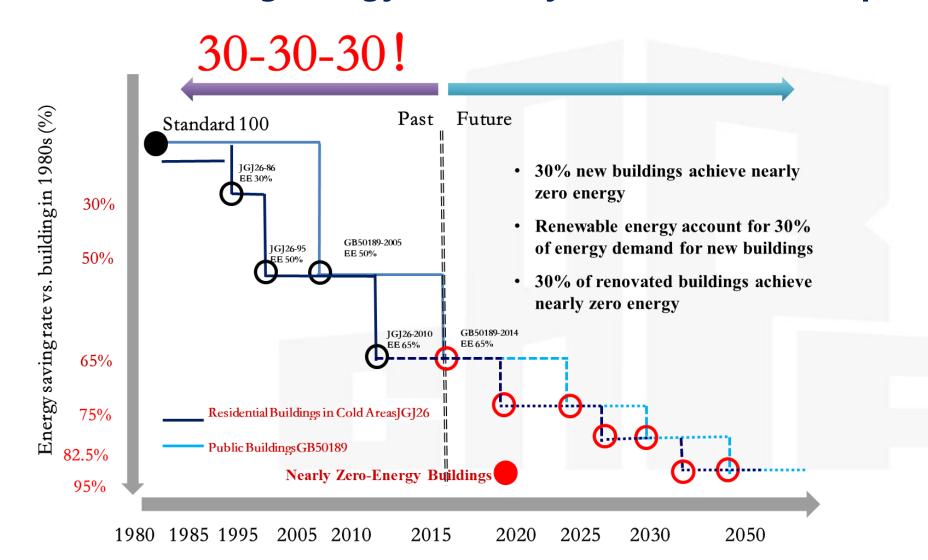
3rd national NZEB conference, Jinan, Shandong Province

4th national NZEB conference, Gaobeidian, Hebei Province

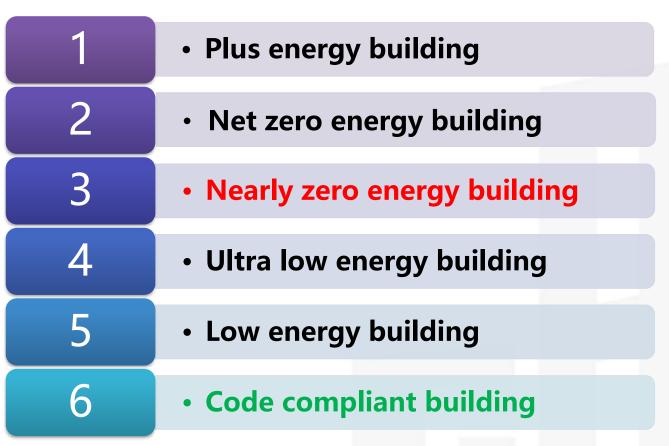
Training of Technical Guideline for Passive Ultra-Low-Energy Green Buildings by MOHURD, Gaobeidian, Qingtao: 1000 Trainees

Industry Alliance

CHINA PASSIVE BUILDING ALLIANCE, or CPBA, under China Association of Building Energy Efficiency

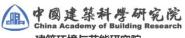


CABR in charge of primary work



Concluding remarks

China Building Energy Efficiency Standard Roadmap


China Building Energy Efficiency Near-long Term Target

Mid-long term target

New building

Starting from 2015, progressive realization of low energy building, ultra low energy building and nearly zero energy building

建筑环境与节能研究院 Institute of Building Environment and Energy Efficiency

Thank you!

CPBA 2018

第五届被动式超低能耗建筑大会

CPBA 2018 - 5th National Conference on Passive and Ultra low energy building 会议背景

2018年各省、市激励"政策爆发年" CPBA分会5年深根细作,努力推动 作为我国历史最悠久的行业系列会议

主办方

中国建筑节能协会被动式超低能耗建筑分会中国建筑科学研究院

协办方

建研爱康(北京)科技发展公司

Dec. 4-5, 2018 Beijing, China 中国·北京

会议时间: 2018年12月4日-5日

会议地点: 北京市九华山庄

组委会联系人

报名及会务: 张时聪 汪佳丽 010-64693038 010-64693251

企业 参展: 沈 莹 010-64518475