Design & Construction of the Lynch, Dickey & Singleton Dental Clinic

Presented by Adam J. Cohen, Architect, CPHC NA & EU, LEED AP

9th Annual North American Passive House Conference

9th Annual North American Passive House Conference

Project Summary

Location: Roanoke, Virginia Client: Drs. Lynch, Dickey and Singleton The First in the world dental clinic built to Passivhaus Standards

Size: 5500 ft² Gross 4,460 ft² TFA Construction: 5B, non-sprinkled Final air test: 0.29 ACH_{50 (Pressurized),} 0.25 ACH_{50 (Depressurized)}

Modeled heat demand: 0.86 kBTU/(ft2yr) ~ 3 kWh/(m²yr) Modeled cooling demand: 8.84 kBTU/(ft²yr) ~ 28 kWh/(m²yr) Modeled Specific Primary Energy Demand: 67.1 kBTU/(ft²yr) ~ 212 kWh/(m²yr)

9th Annual North American Passive House Conference

DESIGN AND CONSTRUCTION OF THE LYNCH, DICKEY & SINGLETON DENTAL CLINIC

SUSTAINABILITY DELIVERED - LOW ENERGY, MARKET RATE AND FUNCTION

The Basics

- Light timber construction
- Simple usage pattern
- Significant thermal comfort requirements
- Mixed humid climate
- ″ Slab R 18.0
- Wall (Brick) R 37.3
- " Wall (Siding) R 36.5
- Wall (EIFS) R 42.4
 - Ceiling R 66.3
 - Window Average R 6.8, SHGC 0.6
 - Glass Block Assem. R 4.9, SHGC 0.66

9th Annual North American Passive House Conference

DESIGN AND CONSTRUCTION OF THE LYNCH, DICKEY & SINGLETON DENTAL CLINIC SUSTAINABILITY DELIVERED - LOW ENERGY, MARKET RATE AND

FUNCTION

THERMAL COMFORT #1 FOCUS THERMAL COMFORT

- One consistent area of concern in all clinics is the thermal comfort of the doctor and patient
- Doctors generally complain of being too hot and often patients complain of being too cold
 When one has a dental procedure, one typically has a nervous patient, a working doctor, an assistant and a dental light. When calculating the heat load in the small work area it becomes clear that the heat generated by the people and light is significant
- Three Pronged Strategy:
 - ⁷ Preconditioned fresh air along the ceiling of each operatory space at a very low velocity
 - ["] Separate low velocity forced air conditioning system directed behind the dental chair
 - 100 ft² passive cooling loops around each dental chair to take radiant heat from the bodies in the space

9th Annual North American Passive House Conference

Thermal Comfort Results – Intended and Unintended

- The doctors report that the operatory thermal comfort is exceptional
- ⁷ The doctors report that the fresh air exchange has eliminated the "dental clinic smell"
 - The waiting room was overheating in the summer
 - West facing reception room rose as high as 76°F, well above the 72°F set point
 - ["] The 80% reduction solar screens that we designed for the glazing in the waiting room were not being used
 - The doctors said that they did not like the look of the screens
 - Good amount of fresh air supply to this space (60 CFM)
 - The very low velocity the warm air felt stagnant
 - ["] The ceiling in this area is 14 ft. while the balance of the space is 9 ft.
 - A ceiling fan was installed in the waiting room which sufficiently mixed the air to alleviate the problem

9th Анниаl North American Passive House Conference

Energy

- After first year building energy use is 2.5% below predicted
- Fairly easy building to predict the energy use
 - ⁷ Existing practice and we were able to set up energy monitoring on the existing dental equipment prior to running our models.
 - ⁷ Did not have to depend on the plate rated energy usage of the equipment for our models.
 - Very consistent occupant usage

Energy

	Passivhaus Dental Clinic - Calculated	Passivhaus Dental Clinic - Measured Results	2009 International Energy Code ¹	CEBECS Average (United States) ²	CIBEUS Average (Canada) ³
kBTU/ft ²	27.55	26.86	53.4	81.49	88.94
% Difference vs Measured Results	2.50%		49.70%	67.04%	69.80%
% Difference vs Calculated Results		-2.50%	48.41%	66.19%	69.02%

1. Energy code EUI was derived by modeling the as built design with current code requirements.

2. CEBECS EUI was extrapolated by averaging data for the following CEBECS data sets:

a. Building square footage: 5,001-10,000

- b. Principal building activity: Healthcare Outpatient
- c. Principal building activity: Office
- d. Year Constructed: 2000-2003
- e. Census Region and Division: South Atlantic
- f. Climate Zone: 30-Year Average: 4,000-5,499 HDD
- g. Number of Floors: One
- 3. CIBEUS EUI was extrapolated by averaging data for the following CIBEUS data sets:
 - a. Ambulatory Surgical Center
 - b. Medical Office
 - c. Outpatient Rehabilitation/Physical Therapy
 - d. Urgent Care/Clinic/Other Outpatient

9th Annual North American Passive House Conference

DESIGN AND CONSTRUCTION OF THE LYNCH, DICKEY & SINGLETON DENTAL CLINIC

SUSTAINABILITY DELIVERED - LOW ENERGY, MARKET RATE AND

FUNCTION

Saving the Best for Last

- Our experience with dental clincs over the past decade (12 projects) has shown that dental clinics in our region range from \$150 to \$200 per ft².
- This clinic was delivered for <u>\$155</u> per ft². Low market rate! Once again proving the cost effectivness of the Passivhaus methodology!

9th Анниаl North American Passive House Conference

\$aving\$ Howod you do that HIGH PERFROMANCE AT MARKET RATE

- 1. Recognize and eliminate the inefficiencies we build into our current Design/Construction system
- 2. Leverage those savings for high performance design and construction
- 3. Aggressively employ true integrated design
- 4. The building must be conceptualized as a holistic system
- 5. Synergies within this system should are identified and maximized
- 6. Rigorous field quality control implemented (Commissioning is VITAL to success)
- 7. Operational monitoring to fine tune systems

9th Annual North American Passive House Conference

Questions & Contact

Thank you!

Adam J. Cohen, RA: MD, VT,CO, CPHC NA & EU, LEED AP ©

Adam.CohenAJ@gmail.com

540.774.4800

9th Annual North American Passive House Conference

