Getting Real About Renewables

Passive House & The Future of Energy

11th Annual North American Passive House Conference

Philadelphia, PA September 23, 2016

Graham Irwin

Principal, Essential Habitat Architecture www.essentialhabitat.com

Conversation with a 4 Year Old

(Returning home to a dark house)

Luke: Why's it so dark in here?

Daddy: Because it's a waste of power to have the lights on when you don't need them.

Luke: Why don't we just get solar on the roof?

Daddy: It would still be a waste of power to have the lights on when you don't need them.

Luke: But it's from the sun!

Daddy: Not at night.

Luke: Oh, that's a problem.

Grid = "Big Battery?" Fuel Cell"

Yes

- Renewables offset fossil fuels
- Current grid economics support this view

No

- "Storage" is unused fuel (except ~7% hydro)
- No "back feed" from distribution upward

How Much "Storage?" 101 of 115 Trillion kWh in 2011

US Electrical Grid Source Energy (2011) Petroleum 1% Nuclear 21% Nat. Gas 20% Renewable 12% Coal 46% - Source: US EIA

It's not just a fuel change plus batteries, a renewable grid requires a new way of thinking.

Think About Power, Not Energy!

Understand The Challenges Recognize The Opportunities

Challenges

1st Challenge – No Sun At Night

Solar's a Near Miss!

1am 2am 3am 4am 5am 6am 7am 8am 9am 10am 11am 12pm 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm 12am Hourly breakdown of wind & solar

Source: CAISO

Solar Only, No Demand Reduction

California Grid Load (March 31)

Energy: 13 GW x 3 hrs / 2 = 19,500,000 kWh / 10 kWh / 70% = 2,790,000 Tesla 10 kW Powerwalls Power: 13 GW / 2 kW = 6,500,000 Tesla 10 kW Powerwalls California: 12% Renewable in 2014, 33% by 2030, 50% Renewable by 2050

The "Duck" Curve

It is Happening NOW! – Tom Kabat

www.caiso.com/outlook/SystemStatus.html or "ISO Today" Smartphone App

The "Nessie" Curve

Overloading at the Distribution Level

- instituteforenergyresearch.org/solar-energys-duck-curve/

Hawaii: Backfeed with 11% Rooftop PV (15-18% overall); 100% Renewable by 2045

The "Ente" Curve **Negative Wholesale Electrical Prices**

EPEXSPOTAUCTION DATA TABLE DATA CHART AGGREGATED CURVE 11/05/2014 France Germany/Austria (Phelix) Switzerland (Swissix) 11/05/2014 Month Year Week Quarter no average Price

- energytransition.de/2014/05/german-power-prices-negative-over-weekend/

Day

(MWh

Germany: Negative Prices with 27% Renewable in 2014; 80% Renewable by 2050

Net Zero: Who Benefits?

& What Behavior is Encouraged?

Hourly grid electric use on a hot day in the west: Solar Homes versus Non-Solar Homes

https://blog.opower.com/2014/12/solar-homes-utilities-love/

So What About Storage?

Daily Storage

Asis Day Nitetor

- Pumped Hydro
- Concentrated Solar Plants (CSP)
- Solar Thermal (Small Tank)
- Interruptible Tariff/Direct Load Control
- Dynamic Demand Appliances
- Smart Inverters (Curtailment & Correction)
- Batteries
- Passive House

- Time Constant (τ) = Thermal Mass (Wh/K)/Conductance (W/K)
- τ + solar & int. gains + air changes = "reaction speed" of building to ΔT .
- Passive House: τ = 5-30+ days (120-720+ hrs.) Heating load in Passive Houses, Passipedia

Proof in Practice:

a Passive House in a heat wave.

Midori Haus, Santa Cruz, CA Summer Comfort without Air Conditioning!

Proof in Practice:

a Passive House in a heat wave.

Midori Haus, Santa Cruz, CA Summer Comfort without Air Conditioning!

- Time Constant (τ) = Thermal Mass (Wh/K)/Conductance (W/K)
- τ + solar & int. gains + air changes = "reaction speed" of building to ΔT .
- Passive House: τ = 5-30+ days (120-720+ hrs.) Heating load in Passive Houses, Passipedia

Now for the Hard Part...

2nd Challenge – Long Nights in Winter

http://science.howstuffworks.com

Monthly CA Grid Load

Typical Daily Grid Load vs. % Solar Energy

Monthly CA Grid Load

Typical Daily Grid Load vs. % Solar Energy

Monthly CA Grid Load

Typical Daily Grid Load vs. % Solar Energy

What About Heating & DHW?

Seasonal Storage

- Pumped Hydro
- Biomass
- Solar Thermal (<u>LARGE</u> Tank, Sand Pit, etc.)
- Synthetic Methane ("Power to Gas")
- Ground Tempering/Ground Source HP
- Passive House

Proof in Practice:

Passive House Seasonal Energy Use.

2869 kWh Elec. + 50 Therms (1,465 kWh) Nat. Gas = 4,334 kWh (before PV!) Before Retrofit 21,928 kWh/yr, Similar CA Home 19,596 kWh/yr

Proof in Practice:

Passive House Seasonal Energy Use.

2869 kWh Elec. + 50 Therms (1,465 kWh) Nat. Gas = 4,334 kWh (before PV!) Before Retrofit 21,928 kWh/yr, Similar CA Home 19,596 kWh/yr

Opportunities

Where's the Money?

...not the energy (kWh).

An Expensive Problem Meeting Peak Demand is Costly

TDV Multipliers, CZ3 (Oakland) Residential

Time Dependent Valuation (TDV) hourly multipliers mostly tied to cost. CZ3 (Oakland): Max 276.54 (Aug. 30 5:00 PM), Min 10.68 (May 7 4:00 AM) = 26 to 1!

How Expensive?

A 5% reduction in US peak load is worth \$3 Billion/yr

The Brattle Group. The Power of Five Percent, How Dynamic Pricing Can Save \$35 Billion in Electricity Costs. May 16, 2007.

In the Future?

It's getting worse. Solar won't help. We need lots of solar!

Peak-to-Average Demand Ratio (New England), 1993-2012¹

What Happens to Net Zero

When the Price for Your Power is Negative?

How is this possible?

- Nuclear plants operate continuously at full power.
- Hydroelectric water flow for fish, etc.
- Eligible renewable generators get a \$22/MWh tax credit.
- Maintenance & fuel costs to stop & start large steam turbines.

Grid Business Model

- Buy Power Wholesale
 - 1 Day Ahead
 - Price Varies Hourly
- Sell Energy Retail
 - Bill Monthly
 - Priced After the Fact
- Barter (Net Metering)
 - Trade Cheaper Baseline Power for Near Peak Solar
- Not for Long!
 - Now consumers buy energy; soon we'll buy (& sell) <u>power</u> on an hourly basis. (TOU \$ in CA by 2019)

EMBRACE CONTRARIAN DEMAND: GO PASSIVE HOUSE!

Thank You! Questions?

Passive House = Thermal Battery ©2015 Essential Habitat

House of batteries or house as a battery?

Graham Irwin

Principal, Essential Habitat Architecture www.essentialhabitat.com

