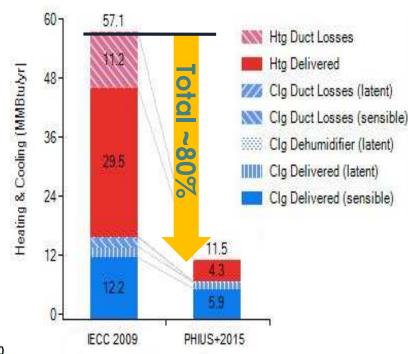

CLIMATE SPECIFIC PASSIVE BUILDING STANDARDS, TOOLS, COMPONENTS

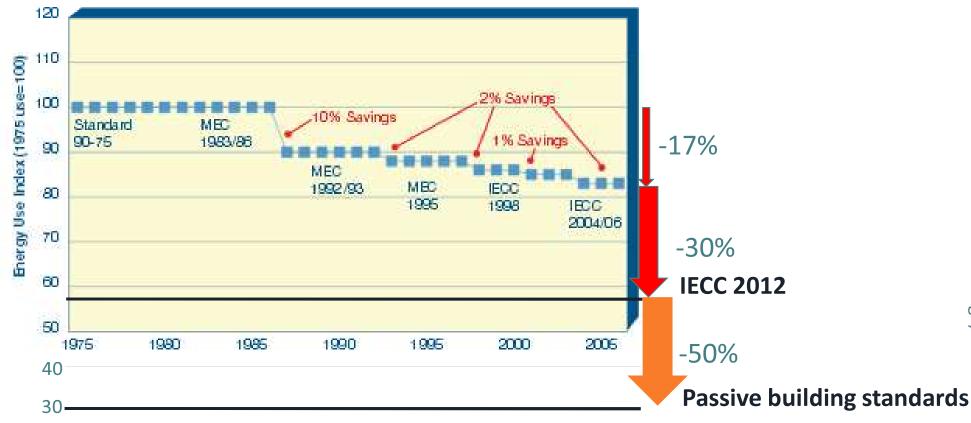
FUTURE WORLDWIDE TRANSITION



PASSIVE BUILDING IS EFFECTIVE IN REDUCING ENERGY: ~ FACTOR 8-10

Heating energy reduction in passive buildings:

~80-90%



Graphic from Article: J. Douglas Balcomb, Ph.D., "The Energy Road Ahead", Solar Today Magazine, Apr 2010

WHERE TODAY'S US ENERGY CODES ARE DEVELOPMENT SINCE THE ENERGY CRISIS

Residential Energy Code Stringency (Measured on a Code-to-Code Basis)

End-uses addressed by the IECC: heating, cooling, domestic hot water

HISTORY PASSIVE BUILDING METRICS

FIRST GENERATION PIONEERS

PASSIVHAUS

PASSIVE HOUSE & BUILDINGS NORTH AMERICA

THE BASIC CONCEPT IS DEVELOPPED

PEAK LOAD TENET

80-90% PEAK REDUCTION – ALL CLIMATES

Developed by North American Scientists

Annual Heat/Cooling Demand

 80-90% reduction from pre 1980 conventional

Annual demands pay back investment

Peak Loads (heating/ cooling)

~ 3.17 -5.39 BTU/hr.ft²
 or 10-17 W/m²

Low peak loads assure comfort & resilience

Airtightness

air-tight construction

Assures envelope quality and longevity

THE CONCEPT CONTINUES TO DEVELOP

A PERFORMANCE METRIC

3 PASS/FAIL CRITERIA - MODERATELY COLD

Developed by Passivhaus Institut

Annual Heat/Cooling Demand

Peak Loads
(heating/
cooling)

<4.75 kBTU/ft²yr (15 kWh/m²a)

• \leq 3.17 BTU/hr.ft² or 0.93W/ft² (10 W/m²)

- Primary Energy Demand
- <38 kBTU/ft²yr (120 kWh/m²a)

Airtightness

• ≤ 0.6 ACH₅₀

- Annual demands pay back Investment in **conservation**
- Low peak loads assure comfort & passive survivability
- Global carbon reduction cap per person, addresses systems efficiency
- Assures envelope quality and Longevity, *durability*

PASSIVHAUS CRITERIA

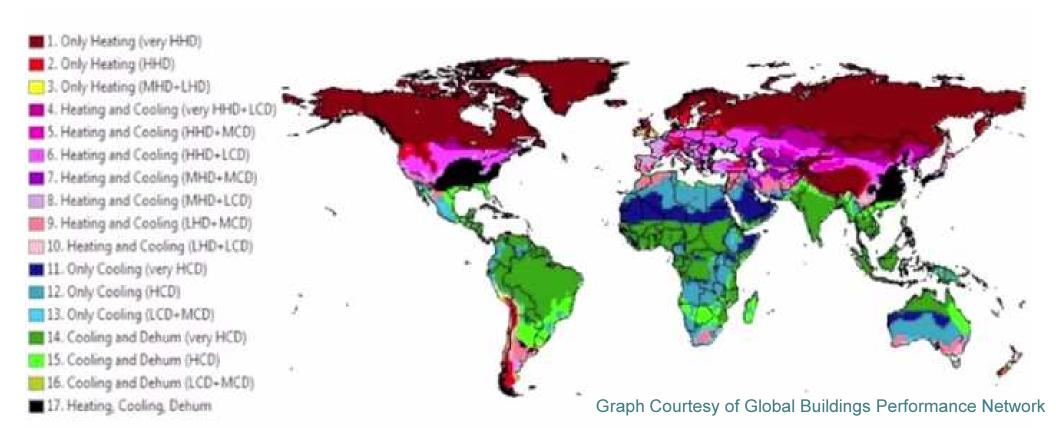
Primary Energy	kBTU/ft²/yr	38
Airtightness	ACH ₅₀	0.6
Annual Heat Demand Annual Cooling Demand	kBTU/ft²/yr	4.75
Peak Heat Load Peak Cooling Load	BTU/ft².hr	3.14 2.54
Ventilation	% efficiency W/cfm	75% ≤ 0.76
Thermal Envelope	hr. ft ² °F/BTU BTU/hr. ft ² °F	≥ R-38.5 ≤ U-0.026
Thermal Bridge Free	BTU/ hr. ft °F	Ψ≤0.006
Windows Installed	BTU/hr. ft ² °F	Uw-install≤0.15
SHGC	%	≈ 0.50 - 0.55

REFINING THE

METHODOLOGY

Performance Components/Systems/Tools

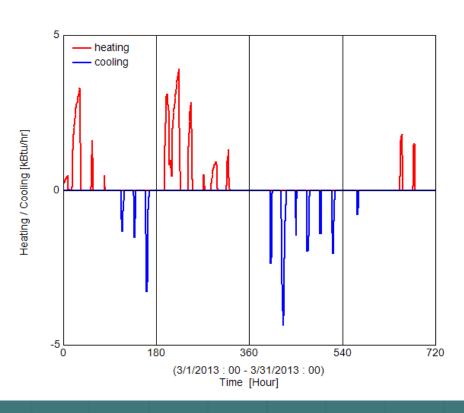
Developed by European Industry



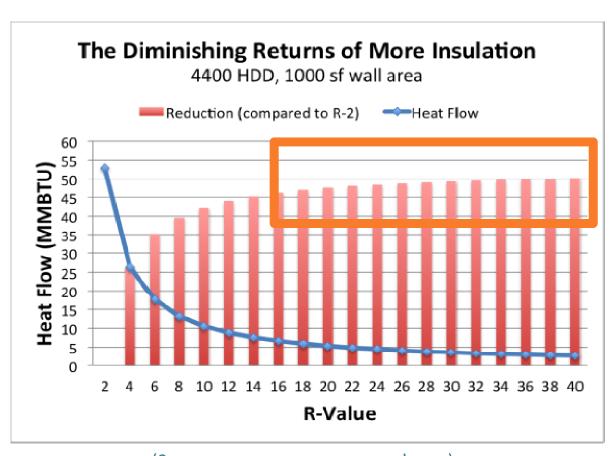
Static Design&Verification Tool

Integrated compact ventilation& space conditioning systems

NEW CHALLENGES: CLIMATE SPECIFIC DESIGN



ONE SIZEDOES NOT FIT ALL


THERMAL COMFORT ISSUES

TOO MUCH FOCUS ON SOLAR

COST FOR TOO MUCH INSULATION PUSHES DESIGNS BACK INTO DIMINISHING RETURNS

LAST INCH OF
INSULATION IN PASSIVE
HOUSE PROJECT IN
SOUTH DAKOTA SAVED
200 kWh ANNUALLY!

HOW FLAT IS TOO FLAT?

(Source: www.energyvanguard.com)

RELATIONSHIP BETWEEN DEGREE DAYS AND PEAKS CHANGES BY CLIMATE

Table 2: Design temperatures and degree days, North America, Coastal, East

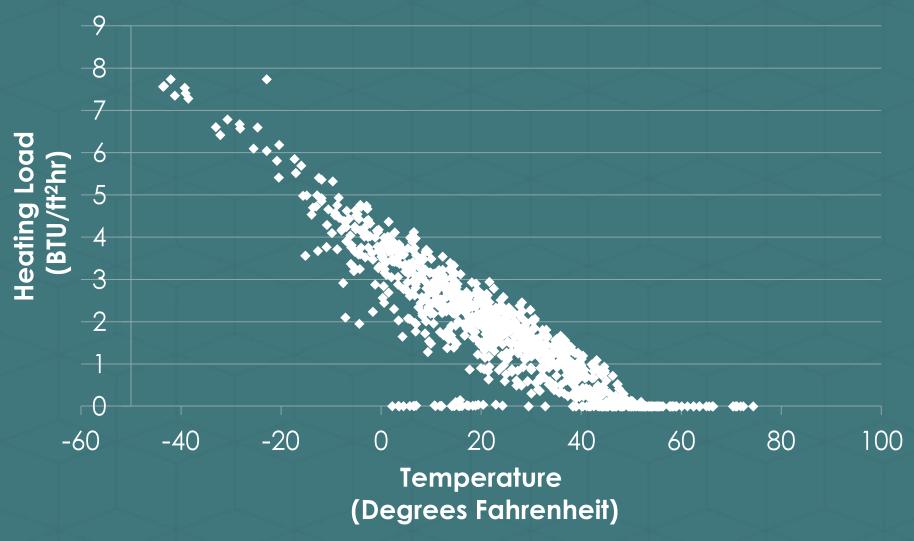
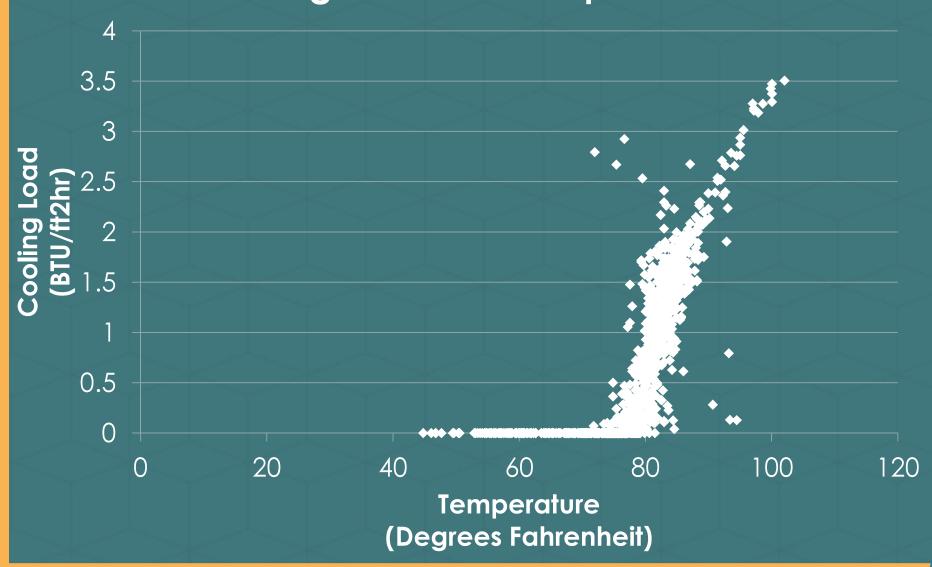

	ASHRAE 99.6%	ASHRAE 99%		
Cities	design temp (°F)	design temp (°F)	HDD65	CDD65
Frankfurt (5)	14.5	19.1	5570	308
Boston, MA (5A)	8.0	13.0	5596	750
Baltimore, MD (4A)	14.0	17.9	4552	1261
New York, NY (4A)	13.8	17.8	4843	984

Table 3: North America, Pacific Northwest

Cities	ASHRAE 99.6% design temp (°F)	ASHRAE 99% design temp (°F)	HDD65	CDD65
Frankfurt (5)	14.5	19.1	5570	308
Squamish, BC (5)	18.3	22.4	5987	115
Portland, OR (4C)	25.2	29.5	4214	433
Prince Rupert, BC (6)	13.3	18.4	6993	1


Peak Heat Load – United States

Peak Cooling Load – United States (SENSIBLE ONLY)

Cooling Load and Temperature

INTERNAL GAINS AND CLIMATE HAVE AN INFLUENCE ON WHERE CRITERIA NEED TO BE SET

Rue-Evans House, Salem, OR

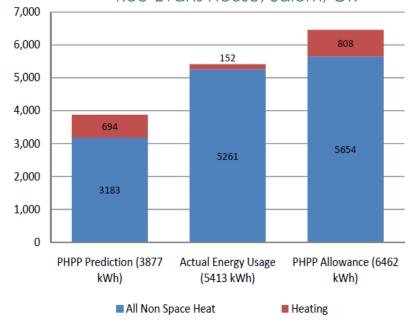
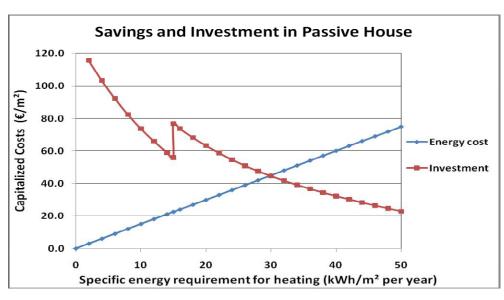


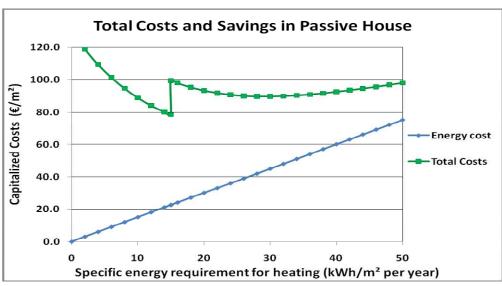
Figure 8: Modeled Energy Use Comparison

	Lighting kWh/person. yr	MELs kWh/person. yr
RESNET	~230	~610
Bldg. America	~320	~800-850
PHPP	31.9	94

ВWAAAAAAAAAAAAHHH

Building: 2000 sf gross finished floor area Occupancy 4 persons 100% CFL 400 sf garage

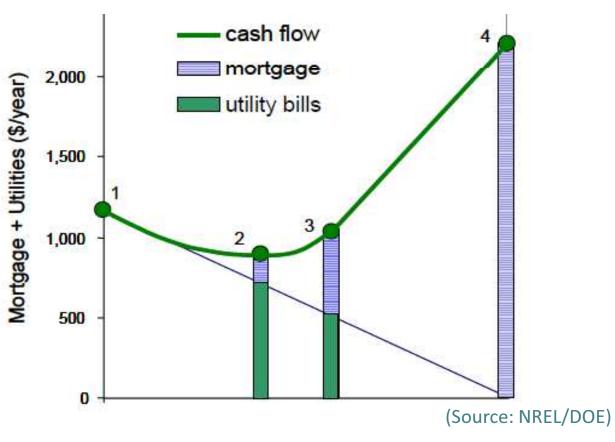

STUDYCONCLUSIONS:


Therefore, taking North American construction cost, energy cost parameters, the cost of PV as well as different levels of investment required by climate into account will result in cost competitive climate specific space conditioning criteria other than 10 W/m² or 15 kWh/m²·yr (3.17 BTU/ft² hr or 4.75 kBTU/ft²·yr).

One cannot optimize for PEAK LOAD and COST at the same time everywhere!!!!!

INVESTMENT IN DURABLE ENCLOSURE IS OFFSET BY DOWNSIZED MECHANICALS AND SAVINGS

Cost assumptions for Central Europe



(Source: IEA Information Paper: Energy Efficiency requirements in Building Codes, Author Jens Laustsen)

DIFFERENT US COST STRUCTURE IMPLIES DIFFERENT ECONOMIC OPTIMUM

Cost assumptions for US

THE CONCEPT CONTINUES TO DEVELOP CLIMATE SPECIFIC METRICS

4 PASS/FAIL CRITERIA – 3 HURDLES TO ZERO

Developed by PHIUS/BSC

Annual Heat/Cooling **Demand**

Heat load < varies by climate

Cooling load < varies by climate

 Peak heat load < varies by climate

 Peak cooling load < varies by climate

Peak Loads

 < 4200 (6200 TEMP) kWh/person

Energy Demand

Airtightness

Primary

 ≤ 0.05 cfm50/sf envelope

Sliding scale by climate, cold climate example

Sliding scale by climate, cold climate example

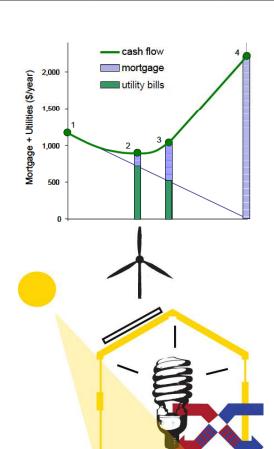
Change to a per person metric for residential and some PV counts

ACH50 does not scale for larger buildings

PHIUS+ 2015 PASSIVE BUILDING CRITERIA

Primary Energy	kBTU/ft²/yr	(Bedrooms+1 *		
Thirtiary Eriergy	KDTO/TT / yT	(6000 kWh *3.412 kBTU/kWh))/iCFA		
Airtightness	cfm/ft ²	0.05 cfm/gross ft ² shell @ 50 pa		
Altigrifiess	CIIII/II	0.08 cfm/gross ft ² shell @ 75 pa		
Annual Heat Demand	kBTU/ft²/yr	1.0 - 12.0		
Annual Cooling Demand	KDTU/II /yI	1.0 - 21.4		
Peak Heat Load	BTU/ft².hr	0.8 - 5.4		
Peak Cooling Load	BIU/II .Nr	1.8 - 8.9		
\/amtilation	% efficiency	53% - 95%		
Ventilation	W/cfm	0.27 - 2.23		
Thermal Envelope	hr. ft ² °F/BTU	≈ R-25 - R-80		
Thermal Envelope	BTU/hr. ft ² °F	≈ U-0.04 - U-0.0125		
Thermal Bridge Free	BTU/ hr. ft °F	Ψ≤0.006		
memia bilage mee	010/111.11 1	4 2 0.000		
Windows Installed	BTU/hr. ft ² °F	Uw-install 0.41 - 0.08		
Williaows Installed	D10/111.11	0 VV 11 13 T G11 0.7 T 0.00		
SHGC	%	≈ 0.27 - 0.61		
91100	,,,	0.127		

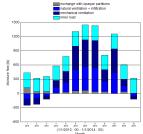
CLIMATE SPECIFIC METRICS


PASSIVE STANDARDS IN VARYING CLIMATES

REFINING THE METHODOLOGY

Climate Specific & Cost Optimal Standards

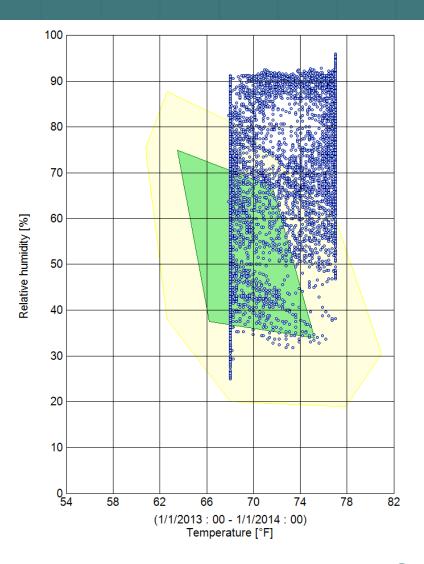
Developed by US Industry

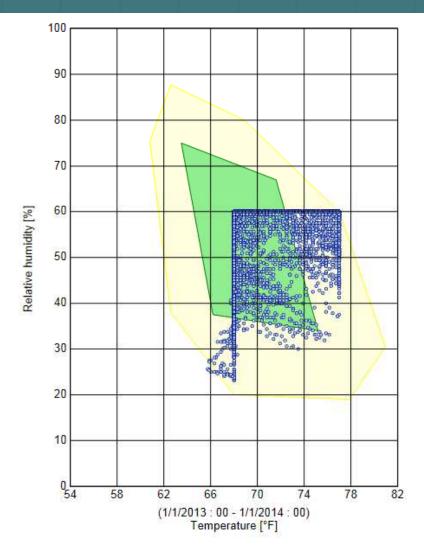

and generation on the path to zero

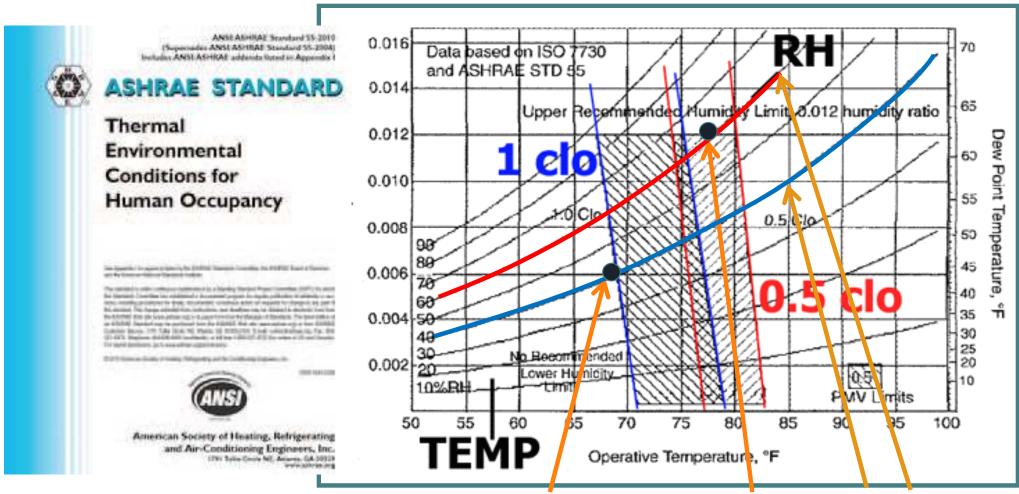
REFINING THE METHODOLOGY

Climate Specific Components/Tools

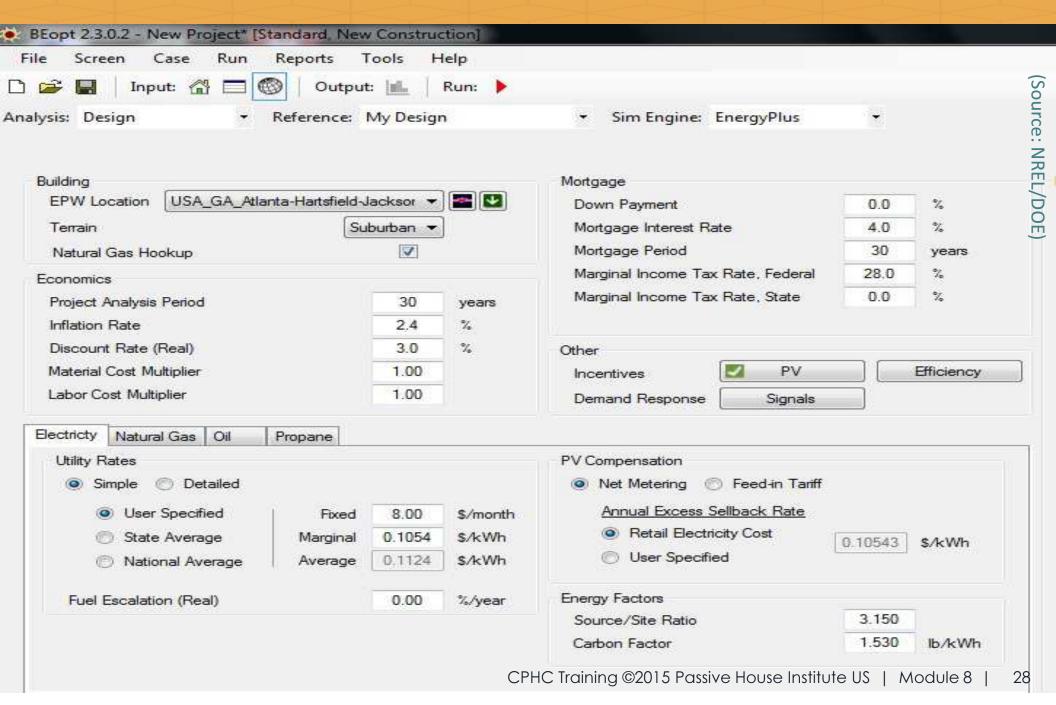
Developed by European & US Industry

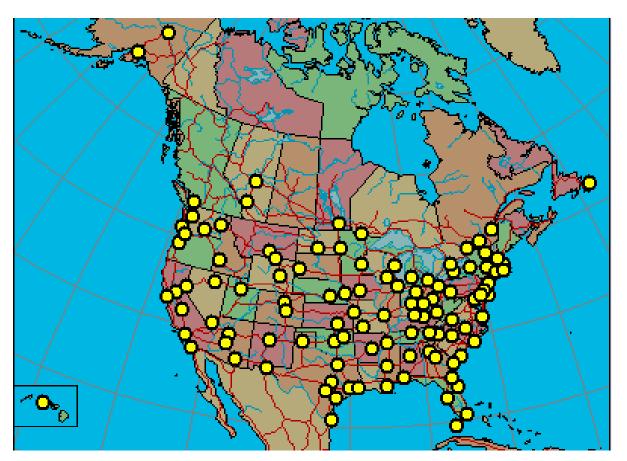





- High performance window performance rating by climate
- Dynamic Design&Verification ToolWUFI Passive
- On demand integrated ventilation
 & space conditioning systems

STATIC MODEL NEEDS TO BE REPLACED WITH DYNAMIC MODELING TO ASSESS THERMAL COMFORT

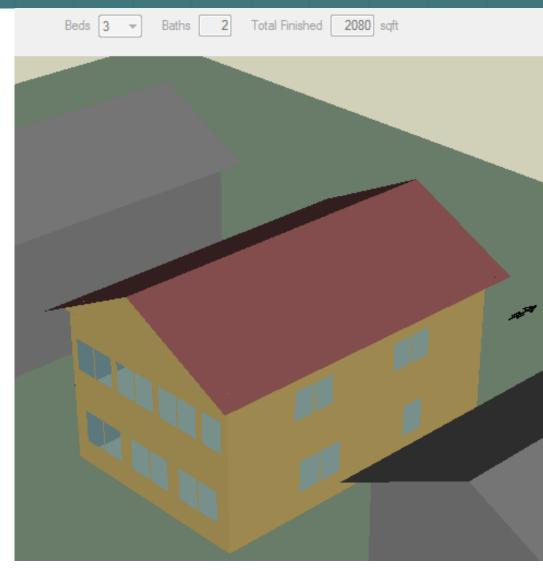

PH THERMAL COMFORT RANGE


Interior comfort conditions winter 68 º F, summer 77 º F, RH 40-60%

Source: ASHRAE Standard 55-2010 Thermal Environmental Conditions for Human Occupancy

BEOPT COST ANALYSIS FACTORS

100+ LOCATIONS IN NORTH AMERICA WERE CALCULATED IN BEOPT FOR A 2000 SQFT TEST HOUSE

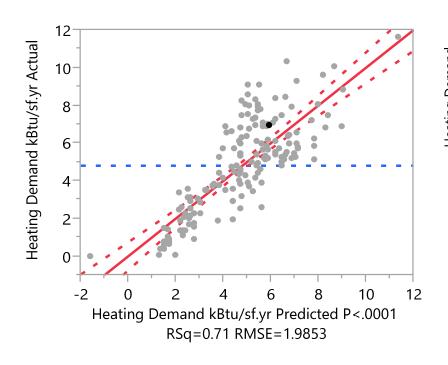


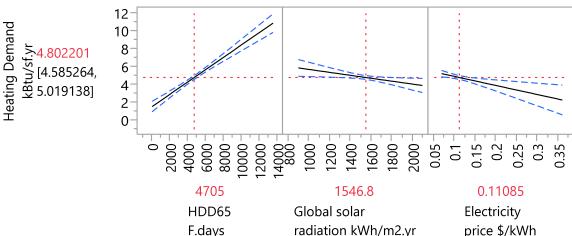
These are the locations for which WUFI weather data is available, which supports dynamic calculations for comfort verification and hygrothermal checks.

COST -ENERGY STUDIES

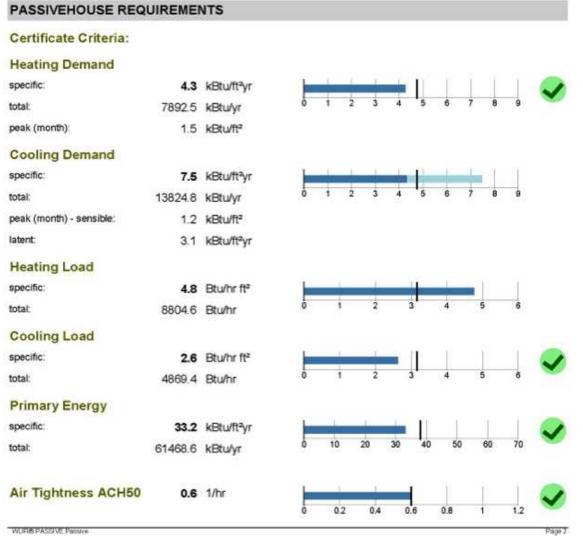
Studies with BEopt:

- ■40x26 ft exterior, short south.
- 2 stories. Nbrs @ 20 feet.
- ■3-bdrm 2-bath.
- Vented attic.
- •Wall exterior-foam.
- •Slab foundation.
- Window U-values constrained for comfort.
- •Window area 15% of wall area, up to 40% conc. on South.
- Air-tight, ducts inside.
- •All-electric.



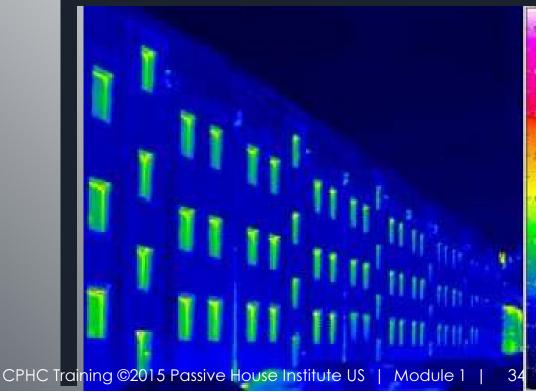

STANDARDS WERE SET JUST PAST THE ECONOMICOPTIMUM

CURVE FIT OF ALL RESULTS - SIMPLIFIED FORMULA FOR ANNUAL HEATING DEMAND & ADJUSTMENTS FOR SOLAR AND ELECTRICITY COST


Actual by Predicted Plot – Annual Heating Demand

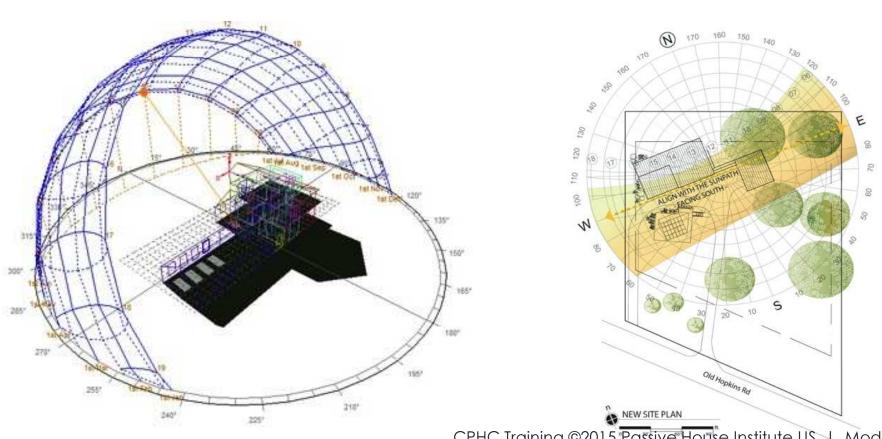
SSHD
$$kBtu/f t2. yr = 5.2 + \frac{HDD65}{1445} - \frac{Solar \frac{kWh}{m2 \cdot yr}}{610} - 10.1 * Elec $/kWh$$

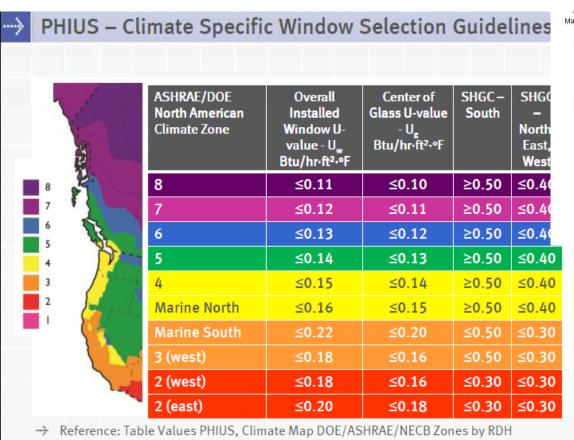
THE SIMPLIFIED FORMULA IS THEN INCORPORATED INTO THE ENERGY MODEL FOR DESIGN VERIFICATION

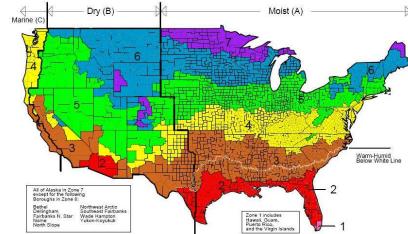


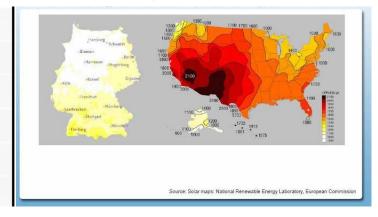
PRINCIPLE 3: HIGH PERFORMANCE WINDOWS/ DOORS

MINIMIZE LOSSES


OPTIMIZE GAINS


BEGIN WITH UNDERSTANDING THE SITE AND CLIMATE


SITE AND CLIMATE



WINDOW PERFORMANCE CERTIFICATION

WINDOWS NEED TO BE DESIGNED TO RESPOND TO THE CLIMATE CONDITIONS

Product name: V	EKA DH9	3WW				Cente	r-of-glass prop	erties	
		Al control							
ASHRAE/IECC/		North,	PHIUS			5 - di			
DOE North		East,				Cardin	Cardinal 2154/2001/2154		
	South-	West -	Passi	ive House Institute	US				
Climate Zone	facing	facing	l						
			Whole-window nominal U-value			Ucog-Valu			
Climate specific rec	ommend	lations:	W/m2K BTU/hr.ft2.F		SHGC	W/m2K	BTU/hr.ft2.J		
8			1.21	0.21	Ī	0.255	0.719	0.12	
7			1.22	0.21	l	0.255	0.726	0.12	
6			1.22	0.22	!	0.255	0.735	0.12	
5			1.22	0.22	!	0.255	0.737	0.13	
4			1.23	0.22	!	0.255	0.741	0.13	
Marine North			1.23	0.22	!	0.255	0.745	0.13	
Marine South	\checkmark	\checkmark	1.23	0.22	!	0.255	0.750	0.13	
3			1.23	0.22	2	0.255	0.747	0.13	
2 West			1.23	0.22	2	0.255	0.749	0.13	
2 East			1.23	0.22	!	0.255	0.749	0.13	
VEKA DH93WW		FR	AME		Psi-sp	pacer			
vertical slider uppe	er	Fran	ne height	U-frame		Ψ			
		mm	in	W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F		
	Head	81	3.18	1.50	0.26	0.034	0.020		
	pper half	25		4.52		0.053	0.030		
	upper left	105		1.72		0.035	0.020		
Jamb up	per right	105	4.14	1.72	0.30	0.035	0.020		
VEKA DH93WW	ı		68	AME		Pei-er	pacer	Psi-opaque	
vertical slider lower		Fran	ne height		rame	Ψ		. J. spaqui	
		mm	in	W/m2K	BTU/hr.ft2.F	W/mK	BTU/hr.ft.F	W/mK	
MRI	ower half	25	0.97	1.16	0.21	0.025	0.015	0.169	
	Sill	85	3.36	1.48	0.26	0.035	0.020	BTWhr.ft.F	
Jamb	lower left	92	3.64	1.55	0.27	0.035	0.020	0.098	
Jamh lo	wer right	92	3.64	1.55	0.27	0.035	0.020	Grade C	
50	-								

PERFORMANCE DATA VERIFIED BY CLIMATE ZONE

PRINCIPLE 4: BALANCED VENTILATION:

HEAT & MOISTURE RECOVERY
POLLUTANT REMOVAL

Most Popular Models

Zehnder ComfoAir 350 (ERV/HRV)

UltimateAir 200DX (ERV)

STUDY CONCLUSIONS

Apply uniform source energy limit per person – fair-share principle to meet globally needed reduction targets.

Space conditioning criteria optimized to benefit the building owners and occupants, recalibrated for economic feasibility, comfort and resilience.

Under the both-and system, more projects will likely find themselves challenged on peak loads and source instead of annual heat demand.

It will tend to favor higher occupancy and more efficient forms of housing, discourage under populated McMansions, soften the small homes penalty.

Mileage will vary but level of envelope improvement should be much closer to an economic optimum in relationship to zero and the cost of PV

THANK YOU

www.PHIUS.org/www.PHAUS.org