

Knowledge | Experience | Solutions

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

Knowledge | Experience | Solutions

© Building Exterior Solutions, Inc., 2016

Course Description

This course will provide a brief introduction to hygrothermal modeling, state of the art software, and relevant standards. We will then investigate several case studies to learn from real world construction examples.

Learning Objectives

At the end of the this course, participants will:

- 1. Be aware of the potential of hygrothermal modeling software
- 2. Learn ANSI/ASHRAE standard's criteria for moisture control design analysis in buildings
- 3. Learn how hygrothermal modeling software can help designs with extreme conditions
- 4. Understand how hygrothermal modeling software can help predict buildings future behavior

Old School Hygrothermal Analysis

WUFI Pro 1d Simulation (Fraunhofer IBP) Wärme Und Feuchte Instationär

Simultaneous Simulations

Five Required Material Properties (minimum)

	Layer/Material Data					
Layer/Material Name Concrete, w/c=0.5					× 📫	
Material Data Info						
Basic Values			Hygrothermal Functions			
Bulk density [lb/ft³] 143,584			Liquid Transport Coefficient, Suction			
Porosity [ftº/ftº]	0,18	18 Liquid Transport Coefficient, Redistribution				
Specific Heat Capacity, Dry [Btu/lb°F]	0,203	Thermal Conductivity, moisture-dependent				
Thermal Conductivity, Dry, 50°F [Btu/h ft°F]	0,924	Thermal Conductivity, temperature-dependent				
Permeability [perm in]	0,716					
Approximation Parameters		Grap	h Edit Table		from File	
Moisture-dep. Thermal Cond. Supplement [%/M%]	8.0					
Temp-dep. Thermal Cond. Supplement [Btu/h ft°F ²]	0.000064	No.	RH [-]	Water Content [Ib/ft ^s]		
			0,0	0,0	New	
			0,05	1,68555529		
			0.1	1,99769516	Delete	
Typical Built-In Moisture [Ib/ft ^a] 9.364 Layer thickness [in] 21 Color		4	0,15	2,12255111		
		5	0,2	2,18497908	Сору	
		6	0,3	2,30983503	Insert	
		7	0.4	2,49711895		
		Сору				
Posto into Material Database	Import			✓ ОК		
	Export			🗙 Abort	<mark>?</mark> <u>H</u> elp	

Jerracon

ASHRAE 160-2009

Provides:

- 1. Design criteria for materials, climate, conditions, moisture generation, ventilation, pressure differentials, rain loads, etc.
- 2. Guidelines for minimizing moisture problems associated with mold growth and corrosion
- 3. Report parameters and guidelines

WUFI Pro 1d Simulation (Fraunhofer IBP)

WUFI Pro 1d Simulation (Fraunhofer IBP)

lerracon

Cross Section [in]

WUFI Pro 1d Simulation (Fraunhofer IBP)

Worst Case Scenario

Project/Case: CVOR /North Exterior Wall Assembly				
Outdoor Climate (Left Side) Indoor Climate	(Right Side)			
Map/File Sine Curves	EN 13788			
Climate File Fort Worth; ASHRAE Yea	ar 3 Details Browse			
Temperature / Relative Humidity Climate Ar	nalysis			
Mean Temperature [*F]: 65.0 Max. Temperature [*F]: 102.9 Min. Temperature [*F]: 7.0	Analyze Mean Relative Humidity [%]: 64 Max. Relative Humidity [%]: 100 Min. Relative Humidity [%]: 15			
Counterradiation Sum [10° Btu/ft²a]: 948.2 Mean Cloud Index [-]: 0.52	Mean Wind Speed [m/s]: 4.98 Normal Rain Sum [in/a]: 38			
Solar Radiation Sum [10 ^a Btu/ft ² a	a] Driving Rain Sum [in/a]			
N N G G G G G G G G G G G G G G G G G G				

Hygrothermal Analysis: unique assemblies

The Challenge

Roof Assembly

- 80-mil Calisle Sureweld TPO reinforced membrane (white)
- 2-inch Calisle SecurShield HD Composite Polyiso
- ³/₄-inch plywood decking
- R-19 Unfaced Fiberglass Insulation
- Air Layer (thickness varies simulated as 0.07 ACH and 6-inches thick)
- 6.5-inches fiberglass insulation
- 5/8-inch Gypsum Board
- PPG Latex Paint at Apartments; PPG Acrylic Paint at Hallways (2 coats with primer)

Surface between TPO and ISO

Assembly #1 (over apartment)

Assembly #2 (over breezeway)

Surface between ISO and Plywood

Assembly #1 (over apartment)

Assembly #2 (over breezeway)

Surface between Plywood and Fiberglass

Assembly #1 (over apartment)

Assembly #2 (over breezeway)

Surface between Fiberglass and Air Layer

Assembly #1 (over apartment)

Assembly #2 (over breezeway)

Surface between Gypsum and Paint

Assembly #1 (over apartment)

Assembly #2 (over breezeway)

Solutions

Hygrothermal Analysis: unique setpoints

The Challenge

North Exterior Wall Assembly 1:

- 3/4-inch clay tile thin brick veneer over 2 1/4" precast concrete panel
- 3-inch extruded polystyrene insulation (XPS)
- 5 1/4-inch precast concrete panel
- 4-inch air cavity
- 3 5/8-inch stud frame cavity with un-faced batt insulation
- 5/8-inch Gypsum Board
- Water based epoxy paint

North Exterior Wall Assembly 2:

- 3/4-inch clay tile thin brick veneer
- 8 1/2-inch precast concrete panel
- 3-inch sprayed polyurethane foam insulation (SPF)
- 1-inch air cavity
- 3 5/8-inch stud frame cavity without insulation
- 5/8-inch Gypsum Board
- Water based epoxy paint
- West Exterior Wall Assembly:
 - 3/4-inch clay tile thin brick veneer over 2 1/4" precast concrete panel
 - 3-inch extruded polystyrene insulation (XPS)
 - 5 1/4-inch precast concrete panel
 - 4-inch air cavity
 - 3 5/8-inch stud frame cavity without insulation
 - 5/8-inch Gypsum Board
 - Water based epoxy paint

Simulated Assemblies

Interior Partition Wall Assembly between Two CVOR:

- Water based paint
- 5/8-inch Gypsum Board
- 3 5/8-inch stud frame cavity with un-faced batt insulation
- 4-inch air cavity
- 3 5/8-inch stud frame cavity without insulation
- 5/8-inch Gypsum Board
- Water based epoxy paint

East Interior Partition Wall Assembly between CVOR and Adjacent Corridor:

- Water based epoxy paint
- 5/8-inch Gypsum Board
- 3 5/8-inch stud frame cavity with un-faced batt insulation
- 5/8-inch Gypsum Board
- Water based epoxy paint

Ceiling/Floor Assembly:

- Floor finish (resinous flooring) with elastomeric base coating
- Average 5 1/2-inch concrete slab

Wall Assembly

- 8 ½-inch precast concrete panel with 3-inch XPS
- 3 5/8" stud cavity without insulation
- 5/8-inch gypsum board
- Water based epoxy paint (5-perm vapor retarder)

Surface between Clay Tile Precast & XPS

North Exterior Wall Assembly #1

West Exterior Wall Assembly

Surface between XPS & Precast Concrete

North Exterior Wall Assembly #1

West Exterior Wall Assembly

Surface between Precast & Air Cavity

North Exterior Wall Assembly #1

West Exterior Wall Assembly

Sketch of Int. Partition Section

Assembly CVOR and Corridor

Interior Partitions

Assembly between two CVORs

Assembly CVOR and Corridor

Ceiling/Floor Assembly (above and below)

- Resinous Flooring Finish (with elastomeric base coating)
- 4.5 to 6.5 inch thick normal weight concrete
- 20 gauge corrugated metal decking

Ceiling Assembly – CVOR to Mech. Rm.

Surface: Flooring and Concrete

Surface: Concrete & Plenum

Flooring Assembly

Plenum and Concrete Case #1

Concrete & Plenum Case #2

Solutions

 $\Theta_{\rm si} = \Theta_{\rm i} - U$ * * Θ_{i} – ρ

Solutions

Hygrothermal Analysis: forensics

The Challenge

Roof Assembly

- 1 ply Firestone SBS FR Cap White
- 1 ply Firestone SBS PolyBase
- ¹/₂-inch DensDeck Prime Roof Board
- Two layers 2-inch Firestone ISO 95+ GL polyisocyanurate insulation (insulation facers simulated with layers of #15 felt)
- 2-inch thick structural concrete supported by 24-inch concrete beams @ 5-foot OC (w/c = 0.5)

Calcium Chloride results 8/31/15

1N	8/28	8/31		
т	11:34	7:56	68 hrs	1.61 lbs
W	30 g	31g	1 gram	
2N	8/28	8/31	81.01 (P + 1017)	
т	11:34	8:21	68 hrs	3.2 lbs
w	29 g	31g	2 gram	
4N	8/28	8/31		
т	11:54	8:15	68 hrs	4.8 lbs
W	29 g	32g	3 gram	
5N	8/28	8/31		
Т	12:01	8:27	68 hrs	6.49 lbs
W	28 g	32g	4 gram	
1S	8/28	8/31	100004-0004	
Т	12:15	8:30	68 hrs	1.61 lbs
W	30 g	31g	1 gram	
25	8/28	8/31		
T	1.08	8.33	67 hrs	6 49 lbs
Ŵ	29 0	330	4 gram	045 105
	20 9	oog	4 gram	
3S	8/28	8/31		
Т	1:15	8:35	67 hrs	6.49 lbs
W	30 g	34g	1 gram	
4S	8/28	8/31	0	
Т	1:21	8:51	67 hrs	6.49 lbs
W	29 g	33g	4 gram	
59	8/29	8/21		
т	1.24	8 52	67 bre	6.49 lbe
w	28 0	320	1 gram	0.45 105
	20 9	029	' grann	

Relative Humidity Probe Results

8/31/15

	Deck Surface	Slab Temp	Humidity	
1S	75.6	70	78%	
25	74.4	76	75%	
3S	77.2	79	85%	
4S	77.4	78	81%	
5S	75.4	77	78%	
1N	75.6	79	79%	
3N	77	74	71%	
4N	73.2	77	82%	
5N	78.2	79	78%	

Roof Cores

Summary of Gravimetric Analysis						
	A	В	С	D	E	F
Core Number and Sample Name	TARE WEIGHT	TARE + SAMPLE	TARE + SAMPLE "DRIED"	WEIGHT OF ORIGINAL SAMPLE	WEIGHT OF DRIED SAMPLE	PERCENT MOISTURE BY DRY WEIGHT
C1-Dense						
Prime	None	None	None	654.8	650.5	0.66%
C1-ISO	None	None	None	79	78.6	0.50%
C2-Dense Prime	None	None	None	323.9	320.1	1.18%
C2-ISO	None	None	None	82.5	80	3.12%
C3-Dense Prime	None	None	None	266.7	264	1.02%
C3-ISO	None	None	None	160.1	158.7	0.88%
C4-Dense Prime	None	None	None	370.7	368.1	0.70%
C4-ISO	None	None	None	71.8	71.5	0.42%

Initial Conditions

- Initial Conditions: 80% RH typical, but structural concrete varied
- 5-year simulation
- Interior setpoints matching exterior setpoints
- Base Case 1: Not at Beam
 - 100% RH Concrete Deck
- Base Case 2: At Beam
 - 100% RH top 4-inches, 80% RH for 22-inches

Not at Beam; No A/C; 100% RH

Not at Beam; with A/C & Heating; 100% RH

At Beam; No A/C; 100% RH

At Beam with A/C; 100% RH 8" Conc

At Beam; No A/C; 100% RH 4" Conc

Conclusions

- Sections through the concrete deck (not at beams), dry out efficiently
- If substrate is heavily saturated, potential exists for water to condense on surface of concrete slab during summer months for first few years
- Actual behavior of roofing assembly likely to be between results of Case 1 and Case 2

This concludes The American Institute of Architects Continuing Education Systems Course

Knowledge | Experience | Solutions

Keith Simon - ksimon@besgrp.com

Jason Wrobel - jwrobel@besgrp.com

www.terracon.com

www.besgrp.com

