Practical Strategies for Heating Practical Strategies for Heating Lal Dominated Climates: High Performance, Low Energy DETAILS IN THE FIELD

North American Passive House Conference 10 September 2015

Rachel Wagner www.wagnerzaun.com Wagner Zaun Architecture 17 N Lake Avenue Duluth, MN 55802

Credit(s) earned on completion of this course will be reported to AIA **CES** for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA **CES** for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives – Part 1

1. Introduction: Defining High performance/low energy 1. Introduction: Defining High performance/low energy An integrated approach

2. One Size Does Not Fit All: The Use of Design 2. One Size Does Not Fit All: The Use of Design How building design impacts performance and energy use Determining how much, when, and where

3. Water Management 3. Water Management

The key to durability - everywhere

4. Air Sealing 4. Air Sealing

Managing heat, air and moisture - everywhere

5. A Good Foundation 5. A Good Foundation

Basement/foundation walls **Insulated Slab on grade**

Learning Objectives – Part 2

6.Framed Walls Framed Walls

Double stud Single stud with foam sheathing

7. Windows Windows

Product and performance **Installation details**

8. The Roof

What it should always do and can do Details for attics and for vaulted ceilings

9. Systems (Mechanical, Electrical, Plumbing): Guidelines for low energy, high performance Matching performance to intent

10. Results of an Integrated Approach 10. Results of an Integrated Approach

Defining High Performance, Low Energy

 \equiv

Designing to Energy Targets: We use a baseline of code and compare versions of the same house

PHIUS+ Target Duluth, MN

High Performance is About More than Energy

& FUNCTIONALITY – make it understandable, easy to use \div DURABILITY – make it last and easy to maintain \triangle ADAPTABILITY – be able to change it **☆ COMFORT – make it feel good** \leftrightarrow HEALTH – – minimize the risks to occupants \diamond RESILIENCY – – make it work under a variety of conditions

Seeing the Forest for the Trees

"When we try to pick out anything by itself, we find it hitched to everything else in the Universe."

- John Muir (1838-1914), engineer, naturalist

The Priorities

- 1. Healthy for Occupants.
- 2. Durable.
- 3. Requires less energy. A lot less.

Designing for High Performance, Low Energy

- 1. Understand how form, assemblies, and materials affect energy and durability.
- 2. Create a building form that helps manage water, heat, and air flow.
- 3. Maximize use of the sun.
- 4. Provide occupant comfort under a variety of conditions.
- 5.Include systems of Energy Flexibility. Include systems of Energy Flexibility.
- 6. Minimize vulnerability to the occupants.

Region plays a role.

In 2009, the average Wisconsin household uses 103 million Btu of energy per home, 15% more than the U.S. average. Source EIA

Designing a High Performance, Low Energy Home in a COLD CLIMATE

What's different?

Cold Climate Matters

- 1. Heating season, peak load, and demand
- 2. Little or no cooling load
- 3. The sun a commodity
- 4. Construction during winters
- 5. Vapor retarders if, when and how
- 6. Mechanical Systems Limitations
- 7. Snow and Wind

One Size Does Not Fit All

Ξ Big house or small house?

- Ξ Simple building form or complex form?
- \Box Construction costs vs operating costs
- \Box Orientation and solar opportunity Orientation and solar opportunity
- Ξ Site constraints and topography
- ◘ Regional preferences and materials

All will affect choices made to achieve high performance and low energy.

10-Day Weather Forecast

Enclosure + Sun + Systems Enclosure + Sun + Systems

If there is no solar gain, even a highly insulated house will gradually cool off. The more insulation, the slower the temperature in the house will drop, but drop it will. With a reasonable amount of passive solar gain and a really well-insulated building envelope, enough heat will enter the house to compensate for most of that heat loss in all but the cloudiest weather.

Alex Wilson, Building Green, 2012

Area of South-facing Windows

- **E** Calculated south facing glass: 8-12% of floor area (usually) (usually)
- \blacksquare If sunlight will strike an area of thermal mass, window area can be larger, but this requires careful design to maintain comfort and energy balance.

Solar-designed overhangs

It's not rocket science ... but it is science.

Properly shade south windows to admit lower altitude of winter sun but block the higher angle of summer sun

- \Box **Roof Overhangs**
- \Box **Trellises**
- О Sun-shades

From design to build: Real Details in the Field

Water Management

Water is the source of most building material or assembly failures.

PAY ATTENTION!

- \blacksquare The Site
- Roofs
- **Windows and Doors**
- **Penetrations to the enclosure**
- **Joints and seams**
- **The building perimeter** The building perimeter

Quiz: Identify at least 5 instances of excellent water management in this photo.

Design can hamper or enhance durability

- \Box Assume water will get in.
- ◘ Design how it will get out.
- □ Make your job easier.
- \Box Low energy is useless if the building fails prematurely.
- This image:
	- L No roof overhangs
	- П Snow collection sills
	- \Box Snow against wood siding

Image from ecocor.us

Good Water Management

Draw what needs to be done

Understand materials and fastening requirements: don't draw "magical" details. (Note: this detail is slab on grade with frost footings on a sloped site.)

Roofs should shed water (and snow) off the building

and preferably out of the path of pedestrian travel.

Flashing details must keep water out of the structure.

Water management protects the structure

Manage penetrations

Why I like rain screens

Water has an easy path down the drainage plane. Cladding and/or sheathing have the ability to dry outward. Siding and siding finish last longer.

Details that matter

- \Box Matrix or furring?
- \Box **• Window location**
- \Box Sill flashing
- \Box Siding material
- \Box **Insect barriers**
- \Box Draw the openings
- П **-** Draw the transitions

Managing water, vapor, and bugs

Managing Air

The air barrier is a continuous assembly of
components connected to
the entire thermal envelope.

To maintain continuity of
the air barrier, the
separate components of the assembly must be continuously connected
to one another.

Uncontrolled air leakage poses risks beyond lost energy.

It can create paths and trapped areas for pollutants, moisture, critters and more, causing building damage and
unhealthy environments.

Integrating air barrier language in drawings and specs

STANDARD METHOD FOR SEALING PENETRATIONS IN THE AIR BARRIER BETWEEN FRAMING MEMBERS @ WALLS & CEILINGS

NOTE: TAPING THE AIR BARRIER TO THE PENETRATING ITEM IS NOT ACCEPTABLE.

Drawn, specified, built

Air Sealing: doing it right takes time and attention

Bad air sealing can make a good envelope perform poorly.
Airtight window installation

Foam, sealant and backer rod all attach to something solid.

Continuity can get complicated

Drawing the details at transitions makes a difference.

Results: Air Tightness in the Field

0.7 ACH50

0.5 ACH50

0.4 ACH50

0.26 ACH50

A Good Foundation

Frost-protected Monolithic Slab

Frost Protected Monolithic Slab Frost Protected Monolithic Slab with Double Stud Wall

Edge details matter

Can framing overhang the foam?

It depends:

Where you are

How much it overhangs

Whether an engineer signed off on it

Details to manage air and water

Include the critical information in the drawing.

Slab on Grade w/ICF Stem Wall

Both walls are bearing. Thermal bridging might be an issue here.

Frost Protected Slab w/ICF Stem Wall Frost Protected Slab w/ICF Stem Wall

Variation: Slab on Grade w/ICF Stem Wall for Double Stud Wall Assembly

Both walls are still bearing. Additional foam added to exterior.

A Low-energy Basement

ICF = easy super-insulation

ICF wall can be built with standard-order forms for R-22 – R-40

ICF walls + super-insulated slab

Heat, Air and Moisture at the Slab

Seal Penetrations **Insulate Under Bearing Walls/Posts** Higher psi under bearing walls, points

Walls, Walls, Walls,

Double Stud Walls

- ◘ Familiar assemblies, common materials
- ◘ Usually filled with blown in insulation
- ◘ There are variations in assembly, using the same principle.

Double Stud Walls

- With one approach to details, you can vary the thickness and achieve an overall Rvalue that "fits."
- \blacksquare In a cold climate, 10""- 16" thick makes sense for low energy construction.
- \blacksquare This assembly has a history of working well in super-insulation, but …

Double stud – –– key issues

- **-** Locating the air barrier and keeping it robust.
- \Box Because the sheathing will be colder in winter, wall should be able to dry to the outside.
- **Plywood and structural fiberboard are usually a better** sheathing choice than OSB.
- **A** gap between sheathing and siding is ideal.
- \Box Fire blocking is required by code.
- \Box Choosing the bearing wall (one or both).
- \Box Assembly sequence, especially in a cold climate.

Air and Moisture Management

OPTIONS

- **Interior sheet polyamide**
- Interior OSB
- **Exterior Sheathing taped**
- **-Use of Spray Foam**
- "Interior "cavity" wall w/OSB air barrier
- -Interior "cavity" wall with membrane air barrier
- ■Larsen truss or I-joist outboard

Air and Moisture Management

Vapor management usually best to the interior. The air barrier can be here, but it is vulnerable to modifications to the interior.

Air barrier here might be ideal but can present $complications$ for construction assembly $$ installing it, insulating both sides, sealing penetrations, inspecting continuity ...

> Maybe the air barrier goes here? But what Maybe the air barrier goes here? But what about the cold sheathing. If the air barrier is about the cold sheathing. If the air barrier is here, a class II vapor retarder should go to the inside.

Evolution of a cold climate double stud wall. Evolution of a cold climate double stud wall.

("TRADITIONAL" DBL STUD WALL)

What's wrong with this picture?

Evolution of a cold climate double stud wall. Evolution of a cold climate double stud wall.

- \Box A really good idea, especially from a building science and longterm durability perspective.
- \Box ■ But ... hard to construct for a 2-story home with a walk-out basement. And winter conditions ... welcome to a cold climate.

Evolution of a cold climate double stud wall. Evolution of a cold climate double stud wall.

Carter Scott's wall, but with interior polyamide as vapor retarder.

Evolution of a cold climate double stud wall. Evolution of a cold climate double stud wall. Variations on a theme.

61

Wall details – transitions can be tricky

Transitions: wall to floor to roof

Alternate super-insulated Rim Assembly

Insulating the rim with cellulose was easier than we imagined.

But usually we use 2-3 applications of 2-part closed cell urethane spray foam

This detail was labor intensive in order to maintain the air barrier, but effective.

Window and door framing

Openings require special framing details, not complicated if thought out in advance and drawn.

Window to the outside with box frame

Door at the Outer Wall for best water management

The results can be dramatic

Single Stud Walls with Exterior Foam Sheathing

Variations on Joe Lstiburek's "Perfect Wall."

Note: This detail was developed to meet the requirements of a specific set of design parameters in a cold/wet climate. Variables such as insulation levels, regional building requirements and contractor preferences may render this detail not applicable to all

Thermal bridging readily addressed.

Structure is protected and kept warm.

Integrates well with vertical slab edge insulation.

Can frame with 2 x 6 or 2 x 4 stud walls.

70Board sheathing can easily be the air barrier, rigid and protected.

Rigid sheathing as the air barrier

www.diychatroom.com

Plywood or OSB seams are sealed with caulk, tape, or liquid.

ZIP sheathing proprietary system has benefits.

Beware instances of some OSB failing air tightness.

Sheathing must be sealed to framing intersections for continuity:

top and bottom plates, trusses, box frames for windows and doors

Use enough foam sheathing to allow a Class III vapor retarder

What kind of foam and how?

Photo: Marc Rosenbaum/GBA

- Polyiso may not be best in a cold climate
- Mineral wool gaining popularity.
- XPS is familiar to builders, but ...
- \bullet EPS can be hard to work with.
- \bullet $\,$ Consider nailbase panels.
- Two layers with staggered seams is still probably the safest route.

Certain things need attention

- \Box Long screws to fasten siding through furring
- О Extra planning at corners to find solid fastening Extra planning at corners to find solid fastening
- \Box Deck attachment details can get tricky Deck attachment details can get tricky

With 3" or more of foam sheathing, may need wood support under windows

- 2 layers of foam are better than one
- If board sheathing is the air barrier, you don't need to tape foam joints, but large gaps should be foamed

Evolving single stud + foam

(S)IP Hybrid (S)IP Hybrid

(S)IP Hybrid (S)IP Hybrid

(S)IP Hybrid (S)IP Hybrid

Windows

Windows for a cold climate

1. High solar gain

- Min 0.5 glazing SHGC or \bigoplus
- ൫ 0.4 whole window value

2. High thermal performance

- ക് MAX. overall U-value of 0.24
- $\boldsymbol{\omega}$ Don't lose more heat from the house than heat gained from the sun

3. High visible transmittance

- It's cold and dark for many months \circledR
- \circledR I look for min. glazing VT of .6

4. Condensation resistance

- Frame with some insulating value ⊛
- Warm edge spacers \circledR

Window Details with Detail

Inset window in wall w/ foam sheathing

Window inset in wall places window into a thermally preferable place

BUT such details make assembly more complicated, costly, and potentially more prone to installation error, water intrusion and harder to replace windows.

Windows and Doors Part of the air barrier assembly so they need solid, continuous connection

Details and installation require care

Water management is critical in assembly design and installation

Layer the assembly so water stays out and drains down

The Roof

Functions: Protect structure Shed water and snow

Can also: Divert rainwater Manage solar gain **Create space** Hold equipment

Truss heel makes super-insulation easy

22" \degree BLOWN CELLULOSE = R-80 ATTIC \degree INSULATION

2009 and 2012 IECC requi $\mathrm{F}^\mathrm{1}_\mathrm{e}$ s R-49 in Climate Zone 7

Managing Air in Roof Assemblies

- \bullet If roof is vented, control the path of ventilation from soffit to ridge.
- \bullet Be clear about connecting the air barrier.
- \bullet In cold climates, a vented roof is the safer path.

I like cellulose insulation, but cellulose should be in a vented roof assembly. If moisture gets in, it can dry out.

A super-insulated vaulted ceiling

- Frame with roof trusses to minimize thermal bridging
- To vent a vaulted ceiling: use site-built vent chutes to create air space and contain the insulation

Seal Penetrations to the Air Barrier

Solid connections at penetrations maintain the air barrier.

If poly or other membrane is your air barrier at the ceiling (or wall), know what it can and cannot be easily sealed to in order to maintain the air barrier.

Mechanical, Electrical and Plumbing (MEP) Systems

Cold Climate Mechanical Matters

- 1. Little or no cooling load, but humidity can be an issue.
- 2. ASHP may not be suitable as sole heating device.
- 3. Combustion space heat is popular.
- 4. HPWH not always appropriate.

Some MEP Guidelines

- \Box Recognize that mechanical equipment is replaced more often than envelope elements – –– choose accordingly.
- Things will change over time build in adaptability and accessibility to equipment and distribution systems.
- \Box Build in good natural ventilation systems. Build in good natural ventilation systems.
- \Box Consider and optimize passive solar heating.
- \Box Plan for redundancy and/or flexibility in heating systems.
- \Box Make things understandable to the homeowner!

Right sized space conditioning

- о In a very low energy house, heat or cooling likely doesn't need to be delivered to every room, but comfort matters.
- \Box Discussions with client and mechanical specialist can help guide decisions about heating and cooling equipment and distribution.

The Reality of HVAC

100Range hood, make up air unit, and wood stove. House tested 0.7 ACH50. Stove doesn't backdraft.

Why I like floor trusses (but subs should cooperate or things can get ugly)

High Performance, Low Energy in the Field

Gets "twice the mileage" or better than the average living vehicle

Can run on more than one fuel Comfortable

Durable

Real Benefits

Comfort and Joy

Esko House

Built 2009 (3 occupants) Built 2009 (3 occupants) 3150 ft2 0.4 ACH50

Heating Demand 20.5 MMBtu/yr (4.87 kBtu/ft2/yr)

Total energy use average: 44.3 MMBtu/yr $(14$ kBtu/ft2 ann)

Skyline House

Built 2008 (4 occupants) Built 2008 (4 occupants) 2950 ft2 0.7 ACH50

GARAGE

Heating Demand 19.4 MMBtu/yr (6.58 kBtu/ft2 yr) (6.58 kBtu/ft2 yr)

Total energy use 2009: 38.9 MMBtu/yr (13.2 kBtu/ft2/yr) (13.2 kBtu/ft2/yr)

Ecologists' House

Built 2014 (3 occupants) Built 2014 (3 occupants) 2336ft2 0.83 ACH50

LIKELY NET ZERO With 6.6 kW PV

Heating Demand unknown

Total energy use 2014-15: 22.3 MMBtu/yr (6454 kWh) (9.5 kBtu/ft2/yr or 2.8 kWh/ft2/yr) Total energy produced: 6389 kWh

Seeing the Forest for the Trees

[www.greenbuildingadvisor.com/blogs/dept/guest](http://www.greenbuildingadvisor.com/blogs/dept/musings/martin-s-pretty-good-house-manifesto)-[blogs/best-prac](http://www.greenbuildingadvisor.com/blogs/dept/musings/martin-s-pretty-good-house-manifesto)tices-zero-net-energy-buildings - - Marc Rosenbaum, 2015 Marc Rosenbaum, 2015

[www.greenbuildingadvisor.com/blogs/dept/musings/martin](http://www.greenbuildingadvisor.com/blogs/dept/musings/martin-s-pretty-good-house-manifesto)-s-pretty-good-house-manifesto - Martin Holladay, 2014

Thank you. Thank you.

17 N Lake Avenue Duluth, MN 55802

218.733.0690 www.wagnerzaun.com