Ground-Coupled Heat Loss with WUFI[®] Plus and Common Standards: Methods to Analyze Designs for Different Climates

Mark Walter and Florian Antretter

PHIUS 2016, Philadelphia, PA

Outline

- Introduction and Motivation
 - Why slab heat loss?
 - What is kind of breakthroughs are we looking for?
- Our "Slab Study"
 - Configurations; Conditions; Locations
- Losses from Different Methods and Summation Periods
 - Heat/Cooling Months; Heating/Cooling Periods
 - WUFI Plus and WUFI 3-D elements
 - Los Alamos and EN-ISO 13370
- Summary and Future Work

The not-so-great construction aspects of Solar Decathlon Competitions

Our enCORE was installed on our campus

Well built walls and roof with super-advanced systems

placed on concrete block piers with really great conditions for mold growth.

enCORE WUFI simulations were hijacked by ground temps

The crawlspace "floor" is a 20 mil vapor barrier/retarder on top of packed stone. For accurate humidity modeling, we needed better ground temperature,

but is a crawl space where "the value" is?

It became clear that studying ground-coupled heat loss

was more important than the crawlspace of a fancy triple-wide in Ohio.

- 10% of the annual heat loss in a 1970s home to about 30-50% of the annual heat loss in 1990 codecompliant homes.
- What would the percent heat loss be in a current "standard-build" home? Next big place to save!
- Ground-coupled heat loss is especially important in buildings with high ratios of ground-coupled floor area to volume.
- The "GBA Effect:" Discussion of a 16" under-slab insulation requirement

impact ... but it ain't easy.

Accurate **simulations** need large volumes "Multi-Physics" **simulations** require specifying hard-todetermine and highly variable boundary conditions

- Unknown soil types
- Variable soil moisture
- Ground water
- Freezing
- Ground cover, including snow

Standards eliminate the need for large-scale simulations

- Inaccuracies
- Inability to answer detailed design questions

- A. Promote the perfect ground-contact insulation system (à la "The Perfect Wall")
 - Not everyone is building the perfect wall
 - The perfect system might not exist
- B. Develop guidelines
 - Rarely optimized
- C. Develop tools that give users the power to make informed decisions for their system
 - Integrate with other tools
 - Push optimization

There are two main objectives for this second study

Compare Methods

- Static Calculations
 - Simplified transmission
 - EN ISO 13370
- Dynamic Simulations
 - WUFI Plus
 - 3-D

Compare Results

- Different climates
- Different designs
 - Insulation Schemes
 - Thicknesses (R-Values)

3-D Results for heating dominated climate

Winter

4 methods:

- Simplified (Los Alamos) Slab Transmission Heat Loss
- EN ISO 13370
- WUFI[®] 3-D elements
- WUFI[®] Plus

Dynamic Methods

4 locations: Chicago (5), Seattle (4C), Phoenix (2), and New Orleans (2A)

Several insulation configurations: next slides

2 insulation thicknesses: 2" (R20) and 4" (R40)

Simple Slab Heat Loss (Los Alamos, 1984):

Based on perimeter (P) and perimeter insulation (R)

Q=4.17 *P/*(5+*R*) *HDD*×24

- Accounts for insulating property of soil
- Used heating degree days (HDD)
- Consider this to be uniform under-slab insulation

EN ISO 13370 (2007):

- Used by PHPP
- Heat loss quantity obtained by summing over heating months using monthly internal/external temperature averages
- Can Include horizontal or vertical perimeter insulation

Steady state ground heat transfer coefficient (W/K) $H\downarrow g = AU + P(\psi\downarrow g + \psi\downarrow g, e)$

 $U=2\lambda/\pi Bt' + dlt \ln(\pi Bt'/dlt + 1)$ or $U=\lambda/0.457Bt' + dlt$ (mod or well insulated)

 $\psi \downarrow g, e = -\lambda/\pi \left[\ln(D/d\downarrow t + 1) - \ln(D/d\downarrow t + d\uparrow' + 1) \right] \text{ (horizontal)}$ $\psi \downarrow g, e = -\lambda/\pi \left[\ln(2D/d\downarrow t + 1) - \ln(2D/d\downarrow t + d\uparrow' + 1) \right] \text{ (vertical)}$

WUFI[®] Plus:

- No perimeter insulation
- 2 year initialization
- Artificial, location-dependent sine cure for temperature of ground-slab interface and no storage
- Transmission heat losses only (no radiative)
- Heat losses from slab-bottom heat flux summed over heating period

WUFI[®] 3-D elements:

- Simulated area 20 m beyond slab, 15 m deep, 2 year init
- Perimeter insulation
- User defined solar gains on inner surface
- No hygro- or radiation-effects for the slab
- Heat "Exchange with 3-D elements"

The WUFI models

- Relatively Small: 9m x 12 m
- R-60 Ceiling, R-36 Walls
- U=0.16 triple pane windows
- 0.53 window shading factor
- Constant loads: 2.8 occupants
- 0.41 constant ventilation

			outside				
Н	omogenous layers		H	2	3	4	
Th	ermal resistance: 2.536 m²K/W (without Rsi, Rse)						
He	eat transfer coefficient(U-value): 0.37 W/m²K						
			þ	0,508	0, 0,1	524	
			5	Thickne	ess [m] 👸		
Th	lickness: 0.726 m		27				
Nr.	Material/Layer (from outside to inside)	ρ [kg/m³]	c [J/kgK]	λ [W/mK]	Thickness [m]	Color	
1	XPS Foamular 250_tc0	25.7	1469.99	0.029	0.013		
				1			
2	Soil 'Christian' FSP	2500	1000	2	0.508		
2 3	Soil 'Christian' FSP XPS Foamular 250_tc0	2500 25.7	1000 1469.99	2 0.029	0.508 0.051		
2 3 4	Soil 'Christian' FSP XPS Foamular 250_tc0 Concrete w/c 0,5	2500 25.7 2308	1000 1469.99 850	2 0.029 1.7	0.508 0.051 0.152		

Case 1: WUFI Plus Slab Component

Dimensions, properties, and BCs for the 3-D element simulations

3-d Element Materials	Dimension	Properties	Boundary Conditions	
Slab	6" (0.152m) thick	Edit material data 83 Name Concrete w/c 0.5 Bulk density [kg/m ³] 2308 Specific heat capacity [J/kgK] 850 Thermal conductivity, dry, 10°C/50°F [W/mK] 1.7 Color Help OK Cancel	Top: simulated Zone 1 Bottom: soil elements Sides: soil or insulation elements	
Soil	53.58 yard x 56.88 yard x 16.40 yard (49m x 52m x15m)	Edit material data 83 Name Sol 'Christian' FSP Bulk density [kg/m ²] 2500 Specific heat capacity [J/kgK] 1000 Thermal conductivity, dry, 10°C/50°F [V//mK] 2 Color Help OK Cancel	Top: Insolation collector Bottom: average yearly outdoor temperature (constant); 99% RH Sides: adiabatic	Chicago: 8.82 C New Orleans: 19.4 C Phoenix: 21.4 C Seattle: 10.4 C
Insulation	2" (0.0508m) or 4" (0.1016m) thick	Edit material data SX Name XPS Foamular 250_MEW Bulk density [kg/m³] 25.7 Specific heat capacity [J/kgK] 1470 Thermal conductivity, dry, 10°C/50°F [W/mK] 0.029 Color Help	Top: slab elements Bottom Soil elements Sides: Soil elements	

The insulation configurations for the 3-d element simulations

Case 2 Case 3 Case 4 Slab Slab Slab Ground Ground Ground Perimeter Edge Insulation Insulation Edge and Vertical Insulation Case 6 Case 7 Case 5 Ground Slab Ground Slab Ground Slab Perimeter Under-Slab Under-Slab Insulation Insulation Edge Insulation Insulation Edge and Vertical Insulation Edge and Vertical Insulation Case 8 Case 9 Case 10 Ground Slab Slab Slab Ground Ground Perimeter Perimeter Edge Insulation Insulation Horizontal Horizontal Insulation Insultation -Insultation Edge and Vertical Horizontal Edge and Vertical Insulation Insultation Insulation

Case 11: ISO 13370, no insulation	Case 12: ISO 13370, uniform under-slab
Case 13: ISO 13370, 4' vertical perimeter only	Case 14: ISO 13370, 2' horizontal perimeter only
Case 15: ISO 13370, full under and 4' vertical perimeter	Case 16: ISO 13370, full under and 2' horizontal perimeter
Case 17: Los Alamos, uniform under- slab	

Heating Degree Day (HDD) from from WUFI Climate Data or online sources (see http://www.degreedays.net/)

- 65 deg. F (18.33 Deg. C) baseline temperature)
- insignificant differences

Chicago: October 1 – June 1	New Orleans: Dec 1 – Feb 1
Phoenix: Dec. 1 – Feb 1	Seattle: September 1 – July 1

Heating (and Cooling) Period in WUFI

 Sum over 1 hour time increments when heating (or cooling) power exceeds 0.1 kW

Results from the "standards" approach

	Chicago	Chicago	NewOrl	NewOrl	Phoeni	Phoenix	Seattle	Seattle
	Thin	Thick	Thin	Thick	x Thin	Thick	Thin	Thick
Case 11: ISO No Insulation	6053		1243		805		7232	
Case 12: ISO Uniform								
under-slab	2260	1439	390	241	237	145	2778	1775
Case 13: ISO 4' vertical								
perimeter	2113	1468	804	732	539	495	2236	1418
Case 14: ISO 2' horiz.								
perimeter	4076	3865	1023	999	671	657	4725	4458
Case 15: ISO uniform and								
4' vert	1624	952	319	187	194	113	1973	1158
Case 16: ISO uniform and								
2' horiz perimeter	2053	1250	367	220	223	133	2516	1535
Case 17: Los Alamos								
uniform	2024	1230	443	270	320	194	1487	904

- Case 17 is in the ball park
- Case 15 is the best system
- 2' horizontal does not do much

- Phoenix has lowest heating loads
- Best case in Seattle is Case 17?

WUFI results for the different configurations

	Chic	Chic	NewOr	NewOr	Phoen	Phoen	Seat	Seatt
	Thin	Thick	Thin	Thick	Thin	Thick	Thin	Thick
Case 1a: WUFI Slab	1831	1138	68	47	313	200	1767	1831
Case 1b: WUFI Slab No Insulation	9004	-	195	-	1396	-	8424	9004
Case 2: No Insulation	8267	8332	-86	-93	144	138	7326	8267
Case 3: 2' Perimeter	5113	4645	134	164	332	259	4919	5113
Case 4: 4' Vertical	4492	4004	225	254	416	439	4522	4492
Case 5: 2' Perim and 4' Vert	4492	3541	218	239	404	420	4094	4492
Case 6: Uniform under-slab	2893	1878	20	4.4	154	99	2802	2893
Case 7: Uniform under and 4' Vert	2415	1596	67	33	199	127	2490	2415
Case 8: 2' Outboard horizon	5322	-	-26	-	323	-	5198	5322
Case 9: 2' Outboard and 4' Vert	4474	-	53	-	412	-	4514	4474
Case 10: 2' Outboard and 2' of Perim	3882	-	65		405	-	4013	3882

What is really going on underground

Shamelessly lifted from Bob Scheulen's Sensible House website (http://www.sensiblehouse.org)

3-D Results for heating dominated climate

Not all of the temperatures in the 3-d volume have stabilized

Simulated temperatures at depth in Phoenix

Which brings us back to the point about not knowing boundary conditions very well.

The Cardiff engineering building from the early 1990s

has internal temperature, ground temperature, and some heat flux data

The data from the outside thermocouple stack

The disturbed soil may still be "initializing."

match really well, especially near surface.

CRRF in Minnesota is for studying retrofit basement walls

Near-surface, near wall results show excellent correlation

Monthly heat flow data

Phoenix with no insulation (left) an uniform (2") insulation

- Standards are not bad for heating climates
- For chosen parameters, full uniform insulation is best
- Horizontal perimeter insulation does *not* help too much
- Vertical perimeter insulation does help
- Cooling climate results indicate less insulation is better for heating periods
 - ... but heating period heat losses are not significant
- By definition dynamic 3-d simulations will have more information; heat flow depends on gradients
- Preliminary cooling period results indicate uniform insulation does not necessarily save the most energy

There is relatively little overhead in implementing WUFI 3D elements

The biggest challenge is the materials properties and initialization

WUFI 3D elements can add much of the necessary physics

- Temperature distributions
- Different zones
- Model edge insulation

→ Storage

Climate specific and dynamic

On-Going Interests

- Work on cooling losses
- Confirm initialization effects
- Work on standardizing summation periods
- Best practices for using WUFI 3-d to simulate ground losses
 - Potentially develop and implement
- Focus and publish

Overview of all results together is a little overwhelming

There are observations and there are questions

- Simple heat loss with HDD and HDR are the same and under-predict slab heat loss in heating climates
- Choices made in the ISO 13370 calculations gave results that are very similar to dynamic WUFI simulations
- For Chicago, a slab with 4" of XPS has about 45% of total heat loss
- For heating period, insulation thickness for New Orleans does not show any difference in heat loss
- Heat loss in Phoenix is surprisingly high and is reduced by about 50% by 8" insulation

Now only the cold and coastal climates are shown.

More observations and questions

- The slab heat loss in Seattle is just as high as in Chicago
- Going from 4" to 8" can reduces heat loss; the reduction is climate dependent
- The benefits of going from WUFI Plus (dynamic) and WUFI Passive (static) are essentially the same.
- WUFI 3D gives the highest heat losses in all cases

We are working to draw more valuable conclusions for you

Might have started with too much insulation. Go back to less.

Region dependent soil types

Add a soil layer component in WUFI Plus

Adding Horizontal Insulation and eliminating interior under-slab insulation

Outside comparisons at lower depths show more discrepancy

But the near-surface indoor correlations are very good, and the influence of indoor temperature is evident.

The match under the slab at the lowest depth is good

Trends for heat flux are generally very good, despite strong external influences on measurements.

The effects of heat capacity on time-shifting are better for the inside.

It appears that snow and ground freezing effects are missing

Snow will influence short wave absorption. Freezing is a phase change (latent heat) process and will drastically change surrounding temperatures