Conditioning Energy Recovery Ventilation Presenters: Adam J. Cohen, RA VT, NH, CO, MD, CPHC NA & EU, LEED AP ® Jason Morosko, VP Engineering Ultimate Air, CPHC NA # Conditioning Energy Recovery Ventilator Do we need this? #### **North American Climate** #### NOT NORTHERN EUROPE Why it becomes a problem - Applying PH Principles - Enhanced Thermal Envelope - Proper Shading - Significantly reduced sensible load - Robust Air Barrier - Reduces air infiltration by factor 10+ - Reduces both sensible and latent heat through infiltration Why it becomes a problem • What if I stop there? Why it becomes a problem • We don't stop there! Why it becomes a problem - We don't stop there! - We put PESKY humans in our wonderful Passive Houses - They have to breathe O₂ - We install mechanical ventilation - Humans also do things like: breathe, shower, cook, sweat, water plants - This creates latent load Why it becomes a problem - So what we have done is: - Decrease sensible load through good PH design - Deliberately introduce fresh air that has with moisture - Created a container to retain interior moisture gain (good in cold northern EU climes, not so good for much of North America) #### **Understanding the Problem** - Sensible heat ratio (SHR) is the term used to describe the ratio of sensible heat load to total heat load. - This can be formulated as: SHR = qs / qt. - qs = sensible heat (kW or BTU) - qt = total heat (kW or BTU) | | Sensible
Load
BTU/Hr | | Load | |------------------------------|----------------------------|---------|---------| | Ventilation Air
(100 CFM) | 370.40 | 2484.30 | 2854.70 | | Interior Heat Gain | 1540.00 | 660.00 | 2200.00 | | Fabric Gains | 2240.00 | 200.00 | 2440.00 | | TOTAL LOAD | 4150.40 | 3344.30 | 7494.70 | | | | | | | Heat Ratio | 55.38% | 44.62% | | | Entering <i>F</i> | \ir | |---|-------| | °F | 90 | | % RH | 75% | | ERV | | | Sensible Eff | 81% | | Latent Eff | 49% | | Room Condi | ition | | °F | 74 | | % RH | 50% | | Bldg Size | 2000 | | *************************************** | | | | Sensible
Load
BTU/Hr | Latent
Load
BTU/Hr | Load | | | |------------------------------|----------------------------|--------------------------|---------|--|--| | Ventilation Air
(150 CFM) | 555.60 | 3726.45 | 4282.05 | | | | Interior Heat Gain | 1540.00 | 660.00 | 2200.00 | | | | Fabric Gains | 2240.00 | 200.00 | 2440.00 | | | | TOTAL LOAD | 4335.60 | 4586.45 | 8922.05 | | | | | | | | | | | Heat Ratio | 48.59% | 51.41% | | | | Understanding the Problem | | Sensible
Load | Latent
Load | Total
Load | |---|---|---|---| | Ventilation Air
(100 CFM) | BTU/Hr
370.40 | BTU/Hr
2484.30 | BTU/Hr
2854.70 | | Interior Heat Gain | 1155.00 | 495.00 | 1650.00 | | Fabric Gains | 1680.00 | 150.00 | 1830.00 | | TOTAL LOAD | 3205.40 | 3129.30 | 6334.70 | | | | | | | Heat Ratio | 50.60% | 49.40% | | | *************************************** | *************************************** | | | | | Sensible | Latent | Total | | | Sensible
Load | Latent
Load | Total
Load | | | | | | | Ventilation Air
(100 CFM) | Load | Load | Load | | | Load
BTU/Hr | Load
BTU/Hr | Load
BTU/Hr | | (100 CFM) | Load
BTU/Hr
370.40 | Load
BTU/Hr
2484.30 | Load
BTU/Hr
2854.70 | | (100 CFM)
Interior Heat Gain | Load
BTU/Hr
370.40
924.00 | Load
BTU/Hr
2484.30
396.00 | Load
BTU/Hr
2854.70
1320.00 | | (100 CFM)
Interior Heat Gain
Fabric Gains | Load
BTU/Hr
370.40
924.00
1344.00 | Load
BTU/Hr
2484.30
396.00
120.00 | Load
BTU/Hr
2854.70
1320.00
1464.00 | | Entering A | ir | |--------------|------| | °F | 90 | | % RH | 75% | | ERV | | | Sensible Eff | 81% | | Latent Eff | 49% | | Room Condi | tion | | °F | 74 | | % RH | 50% | | Bldg Size | 1500 | | | | | Diag Size | 1500 | |--------------|------| | | | | Entering A | ir | | °F | 90 | | % RH | 75% | | ERV | | | Sensible Eff | 81% | | Latent Eff | 49% | | Room Condi | tion | | °F | 74 | | % RH | 50% | | Bldg Size | 1200 | | | Sensible
Load
BTU/Hr | Load | Total
Load
BTU/Hr | |------------------------------|----------------------------|-----------------|-------------------------| | Ventilation Air
(150 CFM) | 555.60 | 3726.45 | 4282.05 | | Interior Heat Gain | 1155.00 | 495.00 | 1650.00 | | Fabric Gains | 1680.00 | 150.00 | 1830.00 | | TOTAL LOAD | 3390.60 | 3390.60 4371.45 | | | | | | | | Heat Ratio | 43.68% | 56.32% | | | | Sensible
Load
BTU/Hr | Load | Total
Load
BTU/Hr | | Ventilation Air | 555.60 | 3726.45 | 4282.05 | 924.00 1344.00 2823.60 **Heat Ratio** (150 CFM) **Interior Heat Gain** **TOTAL LOAD** **Fabric Gains** 396.00 120.00 4242.45 1320.00 1464.00 7066.05 Why it becomes a problem - So what we have done is: - Decrease sensible load through good PH design - Deliberately introduce fresh air that has with moisture - Created a container to retain interior moisture gain (good in cold northern EU climes, not so good for much of North America) | Manufacturer | NominalCapacity
(BTU/ HR) | SHR | |--------------|------------------------------|-----| | Mitsubishi | 9000 | 82% | | Mitsubishi | 12000 | 74% | | Mitsubishi | 15000 | 80% | | Mitsubishi | 18000 | 71% | | Mitsubishi | 24000 | 75% | Mid Atlantic Solutions - I have been designing and building in the Mixed Humid Climate of SW Virginia - Relatively Mild Climate - We were able to control humidity through combination of: - Enthalpy Wheel - Ground Loop with Water to Air Coil - Properly sized Cooling Equipment Water to Air Coil **Enthalpy Wheel** Mid Atlantic Solutions don't work everywhere - We were asked to do projects in Houston, Orlando & Grand Cayman (although to me a Passive House in the Grand Caymans is just called a house) - Analysis found: - There were times of the year when we needed only latent removal without the need for sensible cooling - If we relied on traditional methods we would end up with: - Dedicated dehumidification (Energy penalty) - Overcooled spaces (Uncomfortable) - High interior humidity (Uncomfortable) - We needed a more elegant low energy solution #### **GEN 1 CONCEPT** **Energy Recovery Ventilator with Dehumidification Assist** - SW Virginia solution - Enthalpy Wheel - Ground Loop with Water to Air Coil - Controls - Would not provide dehumidification needed ### **Gen 1 Concept** **Energy Recovery Ventilator with Dehumidification Assist** - SW Virginia solution - Enthalpy Wheel - Ground Loop with Water to Air Coil - Controls - Realized if we added a small H₂O to H₂O heat pump we could provide dehumidification and use the ERV for passive reheat during times of the year when we needed only latent removal without the need for sensible cooling - Also by using advanced logic controls we could optimize the energy use by only engaging the heat pump when conditions require it #### **Concept Evolution** What other problems can we solve - Another issue with Residential PH is the HVAC cost - Whereas in Northern EU folks replace expensive hydronic systems with lower cost air system, in North America we are typically using inexpensive air systems so we tend not to realize savings in HVAC. - With the GEN 1 unit we realized we could add a bit more post ERV hardware and logic and then have a conditioning ERV. #### Gen 2 Concept Energy Recovery Ventilator with Dehumidification Assist & Conditioning Gen 2 Concept | Return Air Sensor Set Points
Temperature Humidity | Call
Temperature Humidity | Outside Air
Temperature Humidity | Stage | Enthalpy Wheel | Fans | Pump | Solenoid A | Solenoid B | Compressor
Compressor Mode | |--|------------------------------|--|---------------------|-------------------|-------------------|----------|----------------------------|--------------------------|-------------------------------| | Above Set Point Above Set Point | | OA > Setpoint OA > Setpoint | One
Two
Three | on
on
on | Min
Min
Max | | open
open
open | closed
open
open | on cool
on cool
on cool | | Above Set Point Above Set Point | Cool Dehumid | OA > Setpoint OA<= Setpoint | One
Two | on
on | Min
Max | on
on | open
open | closed
open | on cool | | Above Set Point Above Set Point | Cool Dehumid | OA = Setpoint OA > Setpoint | One
Two | on
on | Min
Max | on
on | open
open | closed
open | on cool | | Above Set Point Above Set Point | Cool Dehumid | OA = Setpoint OA<= Setpoint | One
Two | on
on | Min
Max | on
on | closed
closed | open
open | on cool | | Above Set Point Above Set Point | Cool Dehumid | OA < Setpoint OA > Setpoint | One
Two | on
on | Min
Max | on
on | open
open | closed
open | on cool | | Above Set Point Above Set Point | Cool Dehumid | OA < Setpoint OA<= Setpoint | One
Two
Three | off
off
off | Min
Max
Max | | closed
closed
closed | closed
closed
open | off nil
off nil
on cool | | Above Set Point Set point or Blow Set Point | Cool Do
Nothing | OA > OA > Setpoint | One
Two | on
on | Min
Max | on
on | open
open | closed
open | on cool | | Above Set Point Blow Set Point or | Cool Do
Nothing | OA > OA <=Setpoint | One
Two | on
on | Min
Max | | closed closed | open
open | on cool | | Above Set Set point or
Point Blow Set Point | Cool Do Nothing | OA = Setpoint OA > Setpoint | One
Two | on
on | Min
Max | on
on | open
open | closed
open | on cool | | Above Set Point Blow Set Point or | Cool Do Nothing | OA = Setpoint OA <=Setpoint | One
Two | on
on | Min
Max | | closed | open
open | on cool | | Above Set Point Blow Set Point or | Cool Do Nothing | OA < Setpoint OA > Setpoint | One
Two
Three | off
on
on | Min
Max
Max | on
on | open
open
open | closed
closed
open | on cool
on cool
on cool | | Above Set Point Blow Set Point or | Cool Do Nothing | OA < Setpoint OA <=Setpoint | One
Two
Three | off
off | Min
Max
Max | off | closed
closed | closed
closed
open | off nil
off nol
on cool | | Set point Above Set Point | | OA > Setpoint OA > Setpoint | One | on | Min | on | open | closed | on cool | | Set point Above Set Point | | | One | on | Min | on | open | closed | on cool | | Set point Above Set Point Set point Above Set Point | | OA = Setpoint OA > Setpoint
OA = Setpoint OA<= Setpoint | One | on | Min
Min | on | open | closed | on cool | | Set point Above Set Point | | OA < Setpoint OA > Setpoint | One | on | Min | on | open | closed | on cool | | Set point Above Set Point | | OA < Setpoint OA <= Setpoint | One | on | Min | on | open | closed | on cool | | Set point Set point | Do Nothing Do Nothing | All conditions All conditions | One | on | min | off | closed | closed | off nil | | Set point Below Set Point | Do Nothing Do Nothing | All conditions All conditions | One | on | min | off | closed | closed | off nil | | Below Set Point Above Set Point | Heat Dehumid | OA > Setpoint OA > Setpoint | One
Two | on
on | Min
Max | | closed
closed | open
open | on heat | | Below Set Point Above Set Point | Heat Dehumid | OA > Setpoint OA <= Setpoint | One
Two
Three | off
off
off | min
min
Max | on
on | closed
closed
closed | open
open | off nil
on heat
on heat | | Below Set Point Above Set Point | Heat Dehumid | OA = Setpoint OA > Setpoint | One
Two | on
on | Min
Max | on
on | closed
closed | open
open | on heat | | Below Set Point Above Set Point | Heat Dehumid | OA = Setpoint OA <= Setpoint | One
Two | on
on | Min
Max | on
on | | open
open | on heat | | Below Set Point Above Set Point | Heat Dehumid | OA < Setpoint OA > Setpoint | One
Two
Two | on
on
on | Min
min
Max | | open
open
open | open
open | on heat
on heat
on heat | | Below Set Point Above Set Point | Heat Dehumid | OA < Setpoint OA <= Setpoint | One
Two | on
on | Min
Max | on
on | closed
closed | open
open | on heat | | Below Set Point Blow Set Point or | Heat Do Nothing | OA > Setpoint OA > Setpoint | One
Two | on
on | min
Max | on
on | | open
open | on heat | | Below Set Point Blow Set Point | Heat Do Nothing | OA > Setpoint OA <= Setpoint | One
Two
Two | off
off
off | min
min
Max | | closed
closed
closed | open
open | off nil
on heat
on heat | | Below Set Point Blow Set Point or | Heat Do Nothing | OA = Setpoint OA > Setpoint | One
Two | on
on | min
Max | | closed
closed | open
open | on heat | | Below Set Point Blow Set Point or | Heat Do Nothing | OA = Setpoint OA <= Setpoint | One
Two | on
on | min
Max | on
on | closed
closed | open
open | on heat | | Below Set Point Blow Set Point or | Heat Do Nothing | OA < Setpoint OA > Setpoint | One
Two | on
on | min
Max | on
on | closed
closed | open
open | on heat | | Below Set Point Blow Set Point | Heat Do Nothing | OA < Setpoint OA <= Setpoint | One
Two | | min
Max | on
on | closed
closed | open
open | on heat | #### Gen 2 Beta Energy Recovery Ventilator with Dehumidification Assist & Conditioning - Laboratory installation and testing - MacGyver Would be Proud - First Field Test ### **Next Steps** #### Where we go from here - Looking for BETA sites - Working with University to fine tune the control algorithms - Looking for R&D funding #### **Questions & Contact** Adam J. Cohen, RA: MD, VT, NH, CO, CPHC NA & EU, LEED AP © Adam.CohenAJ@gmail.com 540.312.8400 Jason Morosko, VP Engineering Ultimate Air, CPHC NA Jmorosko@ultimateair.com 800.535.3448