Net Zero Ready MT Passive House

Comparison of a

Montana 2009 IECC House with
a Montana Passive House

To determine if
a super insulated *Passive House*is a cost-effective approach
for bridging the affordability gap
using alternative energy applications

Method

- Two houses:

 a MT 2009 IECC house (designed) and
 a PHI Passive House (designed and built)
 - Same site, floor plan and square footage

 Analyze both using the same energy modeling tool (PHPP)

> Compare energy use, affordability, solar applications and Net Zero potential

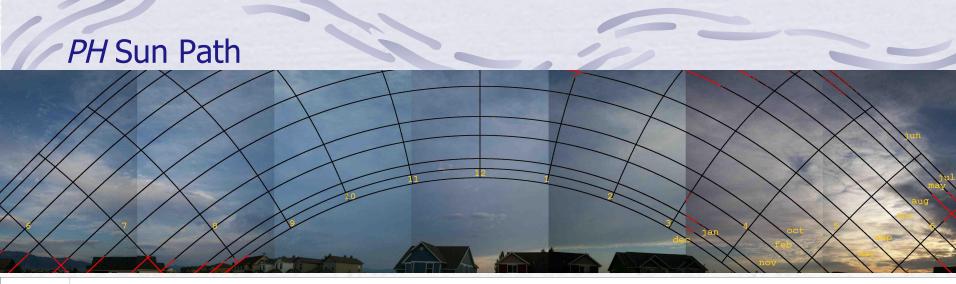
The Issue

Costly Alternative Energy Resources

Overall Strategy

Reduce CO₂ Emissions

Reduce AE Costs


Reduce Consumption Alternative Energy Production

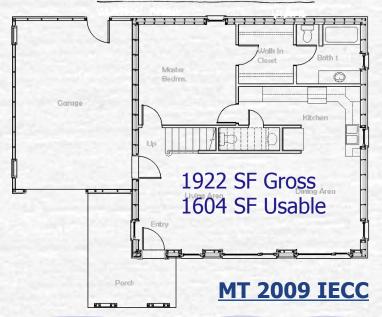
Site Orientation

S 27 51' 49" W

Lot Cost \$15,000

Passive House Planning

CALCULATING SHADING FACTORS


Orientation Glazing Reduction

		Building:	Habitat	PLAN 15.	. 2					Urientation	Area	Factor		Inch/Foot Con	iversion 1001			<u> </u>	1
		Latitude:	45.8	۰				1	,		ft²	rs		(in)	(ft)	· '			
								1	ļ-	North	10.5	54%		1	0.0833333				
									Į.	East	17.1	27%			/A				
									l l	South	152.3	74%		(ft)	(in)				
									Į.	West	5.0	35%			<u> </u>				
						'				Horizontal	0.0	100%	1		<u>-</u> '			· ·	4
Description	Qty	Window Unit		Angle of	Orientation	Glazing	Glazing	Glazing	Height of the Shading	norizontai	Window Jamb Reveal	Distance from Glazing	Overhang		Additional Shading	Horizontal Shading	Reveal Shading	Overhang Shading	Total Shading
Description	Qty	Label	from North	orth from the Horizontal		Width	Height	Агеа	Object	Distance	Depth	Edge to Reveal		Glazing Edge to Overhang		Reduction Factor	Reduction Factor	Reduction Factor	Reduction Factor
			Degrees	Degrees		in	in	ft²	ft	ft	in	in	in	in	%	%	%	%	%
						w _G	h _G	A _G	h _{Hori}	d _{Hori}	O _{Reveal}	d _{Reveal}	Oover	d _{over}	r _{other}	r _H	r _R	r _o	rs
N1 W5	1	N1W5	28	90	North	21.6	35.2	5.3	20.89583	71	10	4 5/7	31	18 3/4		78%	82%	79%	51%
N2 W5	1	ท2พ5	28	90	North	21.6	35.2	5.3	10.125	71	10	4 5/7	28 1/5	17 4/5		88%	82%	80%	58%
E1 W6	1	E1W6	118	90	East	15.6	33.2	3.6	20.89583	16.33	10	4 5/7	31 1/2	115 1/2		35%	75%	94%	25%
E1 W7a	1	E1W7a	118	90	East	21.6	33.2	5.0	20.89583	16.33	10	4 5/7	31 1/2	88 1/2	/	35%	79%	92%	25%
E1 W7b	1	E1W7b	118	90	East	21.6	33.2	5.0	20.89583	16.33	10	4 5/7	31 1/2	237 1/2	/	35%	79%	97%	27%
E2 W6	1	E2W6	118	90	East	15.6	33.2	3.6	10.95833	16.33	10	4 5/7	31 1/2	17 1/4		57%	75%	79%	33%
S1 Wla	2	S1W1a pio	208	90	South	54.1	65.3	49.1	19.89583	110	10	4 5/7	31	16		93%	92%	88%	75%
S1 Wlb	2	S1W1b t/t	t 208	90	South	18.1	61.2	15.3	19.89583	110	10	4 5/7	31	16		93%	82%	88%	67%
S1 W2	1	s1w2 t/t	208	90	South	24.6	61.2	10.4	19.89583	110	10	4 5/7	31	16		93%	85%	88%	69%
s2 W3a	2	S2W3a pio	208	90	South	54.1	60.8	45.7	10.75	110	10	4 5/7	28 1/5	13		97%	92%	88%	78%
s2 W3b	2	s2W3b t/t	t 208	90	South	18.1	56.7	14.2	10.75	110	10	4 5/7	28 1/5	13	/	97%	82%	88%	70%
S2 4a	1	S2W4a pio	208	90	South	47.1	39.3	12.9	10.75	110	10	4 5/7	28 1/5	13	/	97%	91%	85%	74%
S2 4b	1	s2W4b t/t	t 208	90	South	19.1	35.2	4.7	10.75	110	10	4 5/7	28 1/5	13		97%	83%	84%	67%
W1 W8	1	W1W8 t/t	298	90	West	21.6	33.2	5.0	1.791667	6	10	4 5/7	82	22 1/4		77%	78%	57%	35%

Plan Comparison

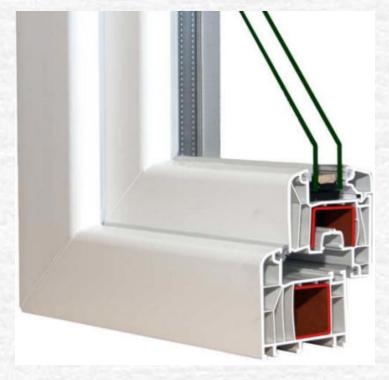


FRONT (SOUTH) ELEVATION

FRONT (SOUTH) ELEVATION

Thermal Envelopes Compared

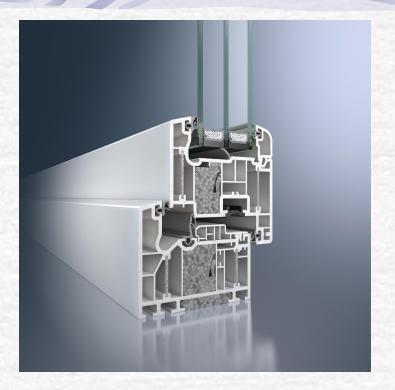
COMPONENT	MT 2009 IECC	North West Energy Star	Passive House
Slab	R-10	R-10	~R-50
Wall	R-20	R-23	~R-70
Ceiling	R-49	R-49	~R-103
Windows	U <or= 0.33<="" th=""><th>U <or= 0.30<="" th=""><th>U <or= 0.11<="" th=""></or=></th></or=></th></or=>	U <or= 0.30<="" th=""><th>U <or= 0.11<="" th=""></or=></th></or=>	U <or= 0.11<="" th=""></or=>
Air Tightness	<or= 4="" 50<="" ach="" th=""><th>or= 2.5</th><th><or><or= 0.6="" 50<="" ach="" li=""></or=></or></th></or=>	or= 2.5	<or><or= 0.6="" 50<="" ach="" li=""></or=></or>


Construction Foundation

Construction Framing

Windows Compared

Vinyl window multi-chamber frame with steel support. Alum. Spacer, double glazed, low E


 SHGC
 0.3

 Ucog (BTU/hr.ft.2F)
 0.33

 Rcog (hr.ft.2F/BTU)
 3.0

MT 2009 IECC

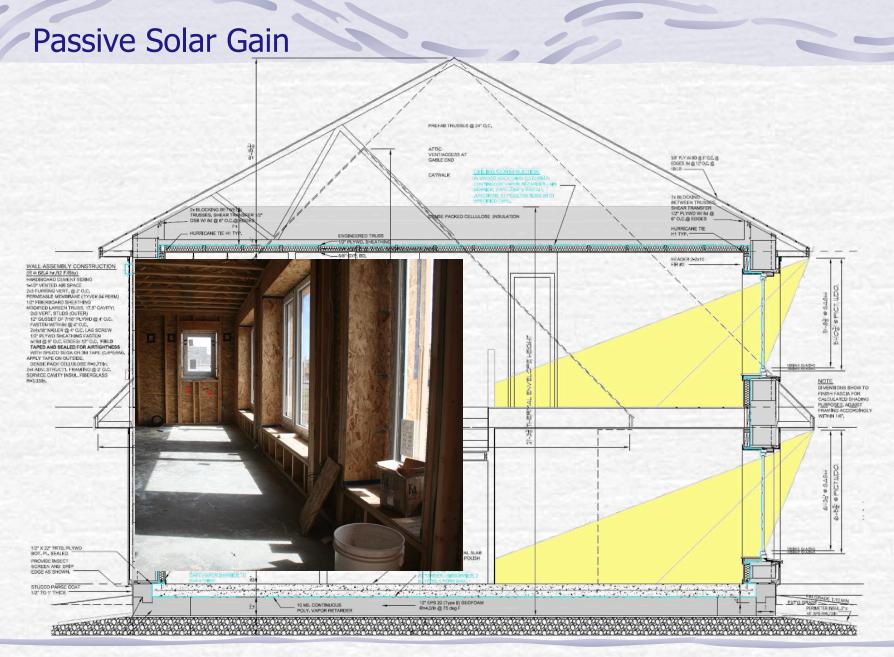
\$7,500

UPVC multi-chamber frame with warm edge spacer, triple glazed, triple seal, argon filled.

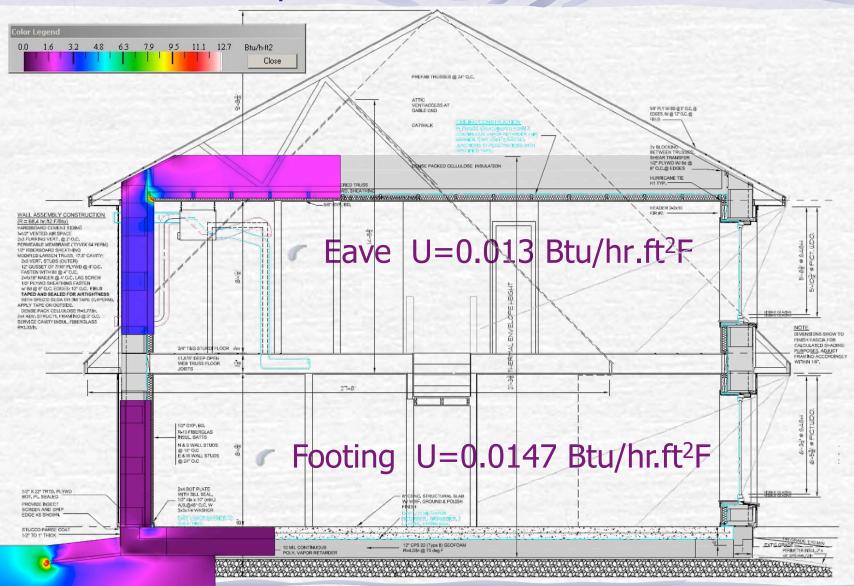
SHGC 0.6 Ucog (BTU/hr.ft.2F) 0.11 Rcog (hr.ft.2F/BTU) 9.46

High Performance Windows \$16,000

Mechanical Systems Compared



40,000 Btu Condensing Boiler \$5,100



Passive House \$13,405

Thermal Continuity

PH Project Construction

Solar Thermal

HRV

Montana's First Passive House

Carbon Equivalents **520** 50,000 50,000 18,815 lbs. 50,000

in black balloon represents 2 oz. Of CO₂ equivalent greenhouse gas emissions

50,000 8,517 lbs. 10,000 8,000

754 Therms + 4,330 kWh/yr

Heating, Cooling, DHW, Auxiliary & Household Electricity

MT 2009 IECC

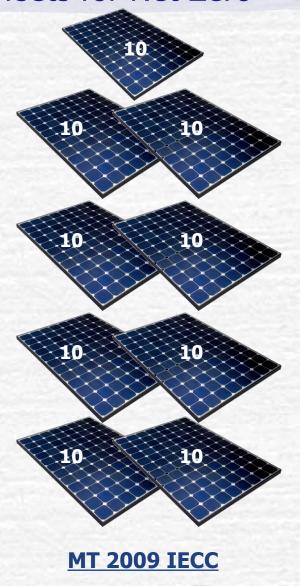
Natural Gas Heat

Average

MT Home
94.7 Dkt/yr
9,139 kWh/yr

5,600 kWh/yr

Heating, Cooling, DHW, Auxiliary & Household Electricity

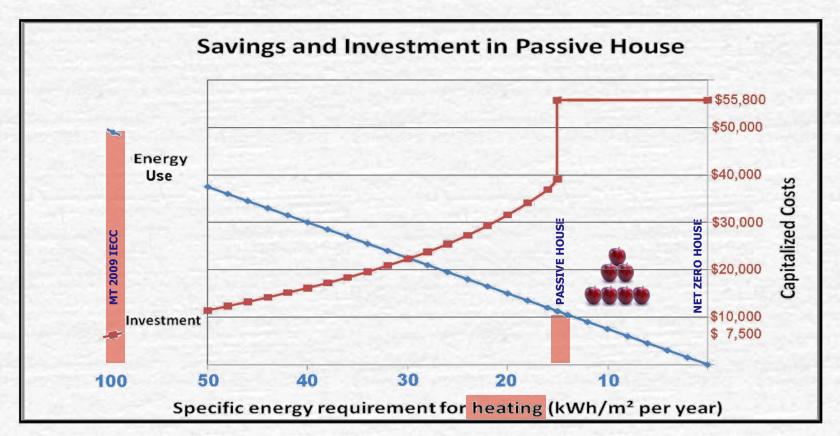

Passive House

All Electric

Passive House Cost

Econon	nics of	PH Rela	ated Upgra	ades		Added value:
Estimated	Additio	nal Cost	of PH featur	es	Cost	Interest is tax
Framing	upgrade			10000	6,500	deductible!
Window		upgrade			8,500	
Insulation	n Packag	e upgrad	de	T.S. T. T. T.	6,500	
Mechanic	cal Syste	ms differ	ence		6,000	
Air Tightr	ness				2,000	MT 2009 IECC house
Miscellan	neous		5 300		1,000	754 Therms; 4,330 kWh/yr 82c per therm cost
Capitaliz	ed cost o	f PH Imp	rovements		30,500	11c per kWh cost
			Improveme H Improvem			per mo.
Estimated	premiu	m for PH	upgrades		40	permonth
Rate	0.0036	4.375%				Passive House
per	360		yrs	76-70-6		5,600 kWh/yr 11c per kWh cost
Nper			payments per year			120 per Nami deser
Pv	30,500 Capitalized cost					
Fv	0				A.L.H.	
			Monthly	(\$151.73)	(\$1,821)	P&I per year
Payment	Name of the last					

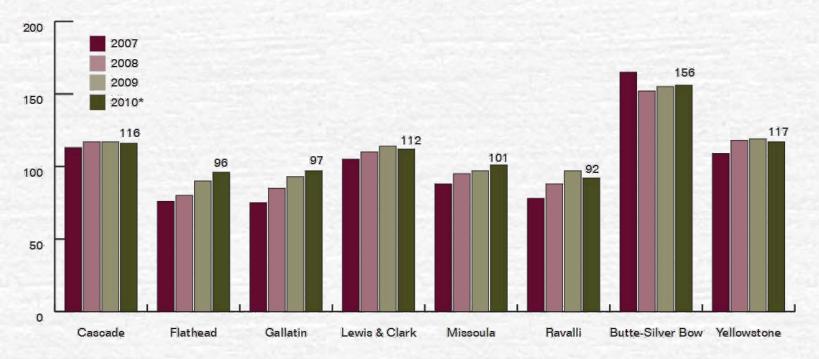
Offsets for Net Zero


- \$ 30,000 Cost
- -\$ 6,000 NW Energy Grant
- -\$ 7,200 30% Fed.Tax Credit
- -\$ 1,000 State Tax Credit (2p)

\$ 15,800

Passive House

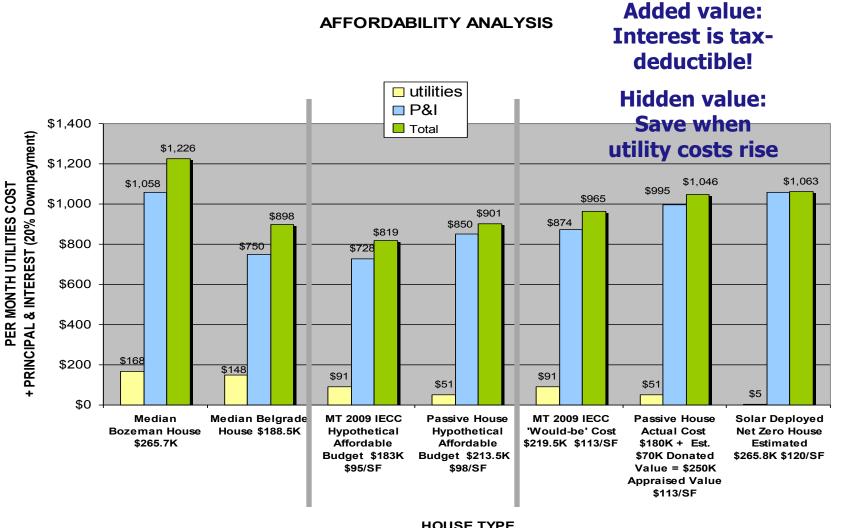
Cost Trade Off


Passive house, with increasing efficiency the consumption decreases but the costs for construction goes up.

Affordability Analysis

Definition of 'Affordability Index'

A measure of a population's ability to afford to purchase ... a house, indexed to the population's income. The value of 100 represents someone earning a population's median income;


values above 100 indicate a house is more affordable and
Figure E2
values below 100 indicating that an item is less affordable.
Housing Affordability Index in Montana's Major Real
Estate Markets, 2007 - 2010

^{*} Preliminary estimates using 2009 income data.

Source: Bureau of Business and Economic Research, University of Montana

Affordability Analysis

HOUSE TYPE

Outlook

Reduced Consumption

Leveraged by design efficiencies

Optimized Alternative Energy Production

Review

1. What is the best way to reduce CO₂ emissions?

- increase alternative energy production a.
- reduce consumption design for energy efficiency all of the above

2. Where can gains in efficiency best be leveraged?

- a. increased insulation and air tightnessb. solar readiness for active and passive applicationsc. windows and mechanical equipment selection
- all of the above

3. Which factors affect long-term home affordability?

- median price for land and homes homeowner's annual income and expenses
- alternative energy grants and tax credits
- a and c
- a, b and c

Lou Moro, ReStore Manager

Dave Horvath
Construction Manager
Volunteers

Habitat for Humanity of Gallatin Valley 406-388-8225 322 Arden Drive, Belgrade MT 59714

Thank You!

Christopher Gonzales Architect, CPHC Living Architecture 406-586-2680

Curtis Smit, PE Consulting Design Solutions Inc. 406-282-7082

Larry Johnson, PE Johnson Structural Engineering 406-585-2939

Passive House Institute U.S.

