Passive House Air Tightness Testing

Presented By:

Gary Nelson

The Energy Conservatory

2014 North American Passive House Conference

Why Airtight Buildings?

- Durability (moisture)
- Comfort
- Energy

Fan Pressurization Airtightness Test

Airtightness Units (Mesmerizing Metrics)

- Airflow at a test pressure:
 - -CFM at 50 or 75 Pascals (CFM50, CFM75)
 - Can be measured directly by blower door
- Leakage Area
 - ELA (4 Pa)
 - EqLA (10 Pa)

Metrics continued

- Airflow at a test pressure normalized by volume
 ACH50 = CFM50*60/Volume
- Airflow at a test pressure normalized by surface area CFM50/SQ FT CFM75/SQ FT (USACE)
 Surface area includes below grade surface areas or not
- Leakage Area normalized by an area
 SLA = ELA (4 Pa)/Conditioned Floor Area (both in same units)

And on and on

Comparison between ACH50 and CFM50/ft2 For a 2000 ft2, .6 ACH50 house

House is 50 X 40 X 8 Volume = 16,000 ft3 Surface area = 50 X 40 X 2 + 180 X 8 = 5440 ft2 CFM50 = (.6 X 16000)/60 = 160 cfm

CFM50/ft2 = 160/5440 = .029 CFM50/ft2

Proposed PHIUS standard is .05 CFM50/ft2 USACE standard is .25 CFM75/ft2 (about .19 CFM50/ft2)

Typical new Swedish commercial buildings are .08 CFM50/ft2

Increase height to 2 story .6 ACH50

House is 50 X 40 X 16 Volume = 32,000 ft3 Surface area = 50 X 40 X 2 + 180 X 16 = 6880 ft2 CFM50 = (.6 X 32000)/60 = 320 cfm CFM50/ft2 = 320/6880 = .047 CFM50/ft2 Just barely meets proposed new PHIUS standard

Air barrier is 58% leakier per square ft. than 1 story although ACH50 is the same

Increase size to 100 X 100 X 100 .6 ACH50

```
Volume = 1,000,000 \text{ ft}3
Surface area = 60,000 ft2
CFM50 = (.6 \times 1000000)/60 = 10,000 \text{ cfm} (2 blower door
fans)
CFM50/ft2 = .17 CFM50/ft2
       More than 3 times greater than new PHIUS standard
Air barrier is 5.7 times leakier per square ft. than 1 story
At .05 \text{ CFM}50/ft2 CFM50 = 3000 cfm (1 blower door fan)
       ACH50 = .18
At .029 \text{ CFM50/ft2} \text{ CFM50} = 1765 (1 \text{ Duct Blaster}^{\text{@}} \text{ fan})
       ACH50 = .11
```

ORIFICE FLOW

- Hole in a thin flat material (special case).
- Dimensions of the hole should be less than 1/2 the dimensions of the flat material.
- Near sea level: CFM = 1.07 x A x $\sqrt{(\triangle P)}$

where: A = area of the hole in sq. inches $\triangle P = \text{pressure drop across the hole (Pa)}$

Note: Works well for exhaust fans, but not supply.

Need still air on the inlet side of the hole.

Multipoint regression test E779, USACE

Regression analysis on Transformed Nonlinear Function: (E779)

$$Q_{cfm} = C*(\Delta P_{pascals})^n$$

Where C = flow coefficient

 $n = \text{flow exponent } (0.5 \le n \le 1.0)$

If it takes three fans to get to 25 Pascals it will take less than three more to get to 50.

This is a simplification. Air density and viscosity also affect flow and the leakage curve really isn't a power law.

Repeated Tests at the reference induced pressure difference. E1827

Sources of Uncertainty in Airtightness Testing

- Error in pressure difference across the shell
- Error in flow measurements
- Error in normalizing to volume or enclosure area
- Error in setting up building