











#### MCKEESPORT YMCA





















## PASSIVE HOUSE MEP SYSTEMS MCKEESPORT YMCA

- MULTIPLE GEOTHERMAL HEAT PUMPS
- ULTIMATE AIR ENERGY RECOVERY UNITS
- PRE-CONDITIONING LOOP VIA COMPRESSOR-LESS GEOTHERMAL WELLS
- MINIMAL DUCTWORK
- HIGH EFFICIENCY LIGHTING FIXTURES



## WRESTLING WITH RETROFITS



#### The 2030 Challenge

Source: @2010 2030. Inc. / Architecture 2030. All Rights Reserved. \*Using no fossil fuel GHG-emitting energy to operate.



## NEED FOR UNDERSTANDING HOW TO MAKE RETROFITS ENERGY EFFICIENT



## OUTSULATION VERSUS INSULATION CULTURAL ATTACHMENT TO EXTERIORS







## **EXISTING WINDOW OPENINGS**



| L'w' - Interior   | U-factor<br>8%4%/12/F<br>0.0544 | S4.0 | Inches<br>132 | Rotation<br>N/A | TotalLength  |        |
|-------------------|---------------------------------|------|---------------|-----------------|--------------|--------|
| SHGC Exterior     | 0.1283                          | 54.0 | 96            | N/A             | Total Length | -      |
| % Enor Energy Nom | 8.09%                           |      |               |                 |              | Export |
|                   |                                 |      |               |                 |              |        |



## THERMAL BRIDGING AT FLOOR SLAB

HEAT LOSS THROUGH THE SLAB





## UNINSULATED SLAB AT BASEMENT

## UNVENTED INSULATED ROOF





## **DESIGN PROCESS ISSUES**





## LEAVING STAIRS INSIDE OR OUT OF THE THERMAL BOUNDARY







## **RETROFIT VERSUS NEW CONSTRUCTION CRITERIA**



## EARLY SELECTIVE DEMOLITION





IMAGES FROM BUILDING SCIENCE CORPORATION

## **BRICK TESTING**

![](_page_18_Figure_0.jpeg)

#### COMPLEX BUILDING SHAPE

## THERM MODELING

![](_page_20_Figure_0.jpeg)

![](_page_20_Picture_1.jpeg)

## **SPRAY FOAM INSULATION**

## THE COST OF PASSIVE HOUSE

## WHY THIS PROJECT IS COST NEUTRAL

•LESS AND SMALLER EQUIPMENT

•SMALLER GEOTHERMAL WELLFIELD (1/3 THE SIZE)

•LESS PIPING BACK TO CENTRAL SYSTEMS

•SMALLER LOCALIZED SYSTEMS

•NO SEPARATE THERMOSTATS

•NO CHILLER

•NO CENTRAL BOILER

#### PREDICTED UTILITY EXPENSES CURRENT MODEL

![](_page_23_Picture_1.jpeg)

## WHERE THE MONEY IS GOING

![](_page_24_Figure_1.jpeg)

## **ISSUES IN CONSTRUCTION**

![](_page_26_Picture_0.jpeg)

## **QUALITY CONTROL FOR AIR-TIGHTNESS**

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

![](_page_27_Picture_3.jpeg)

## WINDOW PROCUREMENT

## PHASED AND OCCUPIED CONSTRUCTION

## SHRINKING SPRAY FOAM

## **LESSONS LEARNED**

•What should architect's charge for Passive House (retrofits take more time than new construction)

•We need more time – how does the schedule adjust? (this is especially true for LIHTC projects)

•Making sure that brick testing and Therm modelling come first

•Should Passive House Standards be different for historic retrofits versus non-historic retrofits (where outsulation is not an option)

•How can we test for air-tightness in partially occupied buildings

## **QUESTIONS FOR THE PASSIVE HOUSE COMMUNITY**

![](_page_32_Picture_0.jpeg)

# MY GOD DO YOU LEARN." PLEASE HELP

## **PASSIVE HOUSE RETROFITS.....NOT FOR SISSIES**

#### LAURA NETTLETON + MICHAEL WHARTNABY

![](_page_34_Picture_1.jpeg)

WWW.THOUGHTFULBALANCE.COM