

DCV and Conditioned Energy Recovery -Active Fresh Air Control for Passive Living-

Ben Newell, Alex Long & Ty Newell
Build Equinox
Newell Instruments, Inc.
1103 N High Cross Rd
Urbana, IL 61802
www.buildequinox.com

Demand Control Ventilation (DCV)

- •What is it?
- •Why do we need it in our homes?
- •Introduction to the CERV™; a residential DCV fresh air conditioning system by Build Equinox/Newell Instruments

Active Control for Passive Living

DCV FRESH AIR Conditioning

CERV

What is the CERV™?

- Conditioning Energy Recovery Ventilator
 - Heat pump technology for exchanging energy
 - •A CERV delivers conditioned air to the home
- Demand Controlled Ventilation (DCV) fresh air conditioning system for residences that manages carbon dioxide and volatile organic compounds (VOC) levels
- "Smart" algorithms for:
 - Heating/cooling/dehumidification
 - •Energy "recovery"
 - Energy efficient defrosting
 - "Free" conditioning
- •Completed UL "listing" tests August, 2012
 - Continuous UL site visit inspections
- •It is NOT a whole house heating/air conditioning system
 - •700-1,000Watts Cooling/2,000-3,000Watts Heating
 - Smoothly interacts with house conditioning systems

Automotive

Military Systems

Appliances

Newell Instruments

Two Divisions

R&D for Industry

Solutions for a Healthy,
Comfortable, and
Sustainable Lifestyle

History of House Energy

Annual House Energy (kWh) Requirements

What Do We Want in a House?

Comfort

Healthy Comfort

Sustainable Healthy Comfort

Zero Energy Chicken House at our Lab

- Building a "zero energy" house is easy
- •A comfortable indoor environment with healthy, fresh air is more important (and more valuable) than energy

Active Control for Passive Living??

1935 GE Globe Top Refrigerator:

- •Manual "on-off" switch
 - •10 minutes per day checking and switching = 8 workdays per year (~\$1600 labor value)
 - •Poor control = poor food quality and poor energy efficiency
 - •Food spoilage, sickness, loss nutritional value
 - •Modern refrigerator uses \$30-40/yr energy for storing \$4000-\$8000/yr of food

Other Examples:

- Manual laundry vs automatic
- Manual dishwashing vs automatic
- Manual hot water vs automatic hot water
- Manual house comfort vs automatic

Our goal is to automatically maintain a high quality indoor air environment in an energy efficient manner

2013-2014 ASHRAE* Presidential theme **Shaping the Next**

"....a critical shift in thinking from a goal of indoor environments that are acceptable to the occupants to those that are truly healthy and productive..."

Bill Bahnfleth 2013-2014 ASHRAE President

*American Society of Heating, Refrigeration and Air Conditioning Engineers

Carbon Dioxide (CO2) Impairs Cognitive Performance

Impact of Carbon Dioxide (CO2) on Human Decision-making Performance*

* "Is CO2 Indoor Pollutant?", William Fisk, Usha Satish Mark Mendel, Toshif and Hotchi, aptibouglas Sullivan, ASHRAE Maral, Vol. 55, No. 3, pp. 84-85, March 2013.

Strongly impairs: Initiative, Information Utilization, Breath of Approach, and Basic Strategy

Value of Fresh Air

Pollutant Variation in Homes is Complex

- •Either CO2 or VOCs may dominate a home's pollutants
- Constant ventilation flow = too much or too little air
- •Even "good" VOCs (chicken soup) should be flushed to avoid odor absorption

Constant Ventilation Flow CO2 in Home

CO2 Concentration - Constant Flow Venting

Indoor Air Quality

Poor indoor air quality impacts:

- Health
- Human Performance

But, how do you know if your air stinks?

Air Quality

You can wait until others tell you it stinks....

Or, You Can Measure and Control It

Two Factors Affect Air Quality

Pollution generation rates

Fresh air flow rate

Conditioning Energy Recovery Ventilator Pronounced "serve"

CERV control screen photo from Denver PH

ENT SETPOINT

FRESH IN
STALE Out

Concept and initial results presented at 2008 Passive House Conference (Duluth MN)

CERV Development

Laboratory and Field Tests 2008 to current

Three UL certifications:

- -Energy Recovery
- -Heat Pump
- -Power electronics component

UL Certification 2012

CERV Fresh Air Supply/Exhaust Air Preferred Duct Design

Panasonic "WhisperLine™" Fans

- •0.5 Watts per cfm (total fan power)
- Balanced ventilation
- Annual fan energy depends on occupancy
- •1 person* vent ~ 80kWh/yr
- •2 persons vent ~ 160kWh/yr
- 4 persons vent ~320kWh/yr

* 12 hours/day occupancy per occupant assumed

Cooling Ventilation Mode

- •Cools and dehumidifies when beneficial, exchanging energy between fresh air stream and exhaust air stream
- •When "fresh air" is nicer than indoor air, maximizes fresh air similar to opening the windows....except it knows to close them when it isn't so nice
- •Unlike an open window, the air is filtered as desired

Cooling Recirculation Mode

- •Additional cooling and dehumidification capacity when desired through recirculation mode....helps maintain uniform air quality and comfort conditions
- •Can decide whether the CERV™ provides as much as it can, or whether it operates only at a level of treating the fresh air
 - •Equinox House uses CERV ™ and 1 ton mini-split combo
 - •Mini-split AC primarily needed for high occupancy time and exceptionally warm/humid weather

Heating Ventilation/Recirculation Modes

Similar to cooling:

- Heats fresh air when beneficial
- Can provide additional heat if desired through recirculation unifying air quality and comfort
- •Energy recovery from frost (during cold weather, 30% of energy exchange is latent)

CERV Control

Master Controller
-secure wireless
(non-internet)
-color touchscreen

Remote Vent Switch (battery free)

- Optional – kitchen, baths, etc

Smith House-DCV Control of CO2 & VOC

Gable House CO2 & VOC (ppm)

(Warm and Neutral Weather)

Energy Impacts

What are the CERV's energy characteristics and how does it compare to basic HRV and ERV systems?

CERV Fresh Air Heating Data

~200cfm air flow -Gross heat = 4.1kW (35.5F to 100.2F) -Net heat = 2.1kW (67.2F to 100.2F)

Exhaust Air to Outside, 36.7F

CER

Conditioned Fresh Air to Inside, 100.2F

Exhaust Air from

Inside, 67.2F

Fresh Air from Outside, 35.5F

Equinox House Monthly Energy (kWh) Jan 2012 – Dec 2012

Is the Highest HRV Efficiency Always Best?

Example House

- •4 Occupants
- Denver
- •2000sqft
- •R48 walls and roof
- Heat pump & AC
- •200W base electric
- •50W/person electric
- •Heat Pump Water Heater
- •200sqft S window
- •50sqft E & W windows

Annual Electric (kWh) vs HRV Efficiency

CERV controls know when it is "nicer" outside than inside and knows when it is more energy efficient to ventilate

Optimal HRV Efficiency

BUILD EQUINOX WWW.BUILDEQUINOX.COM

Annual Energy Trends – CERV/HRV/ERV

Each case will vary by house design, occupancy and location

Thank you!

- •CERV fresh air conditioning technology provides an energy efficient means to ensure a healthy indoor environment under the highly varying conditions in a home
 - •Automated monitoring frees occupants from continual adjustment and programming of a home's ventilation schedule
 - Active sensing and control of carbon dioxide and VOCs maintains excellent indoor air quality in an energy efficient manner
 - Conditioned air delivered throughout a home improves overall house comfort

