

Passive House Institute US

Passive building in Hot and Humid Climates

Lisa White

© Passive House Institute US 2014

Overview

1. Thermal Comfort

Passive House Institute US

- 2. Drivers of sensible and latent cooling loads
- 3. Passive cooling strategies
- 4. Active cooling strategies
- 5. Capabilities of WUFI Passive static
- 6. Capabilities of WUFI Passive dynamic
- 7. Two Humid Climate Case Studies
- 8. WUFI Passive Dynamic Modeled Results

Passive House Institute US

1. Thermal Comfort

Thermal Comfort Factors

PHYSICAL FACTORS

- Clothing CLO
- Activity level MET

USER FACTORS

- Clothing insulation
- Metabolic activity
- State of mind

MENTAL

Passive House Institute US

• Experiences, expectations, influence of other conditions

ENVIRONMENTAL FACTORS

- Air temperature
- Relative humidity
- Air speed
- Radiant conditions

2. Main drivers of sensible and latent cooling loads in buildings

Sensible cooling drivers in buildings

- Internal loads: plug loads, cooking, etc.
- Occupants
- Solar gains through transparent components
- Transmission through opaque components
- Natural Ventilation
- Mechanical Ventilation
- Infiltration

Latent cooling drivers in buildings

- Internal loads
- Occupants
- Exchange through opaque partitions
- Natural Ventilation
- Mechanical Ventilation
- Infiltration

Passive Solar Opportunities (and Challenges)

Passive House Institute US

Solar energy: High potential in the U.S.

Germany is the world's largest solar market, despite a climate less conducive to solar power than the United States. A solar panel placed in Ohio will produce 20-25% more energy than the exact same panel in Germany, due to climate variances.

VLI: "the load generated by one cubic foot per minute of fresh air brought from the weather to space-neutral conditions over the course of one year"

Passive Hous

Fig. 1: Map of Ventilation Load Indexes (VLI) for selected continental U.S. locations

© Passive House Institute US 2014

© Passive House Institute US 2014

Air-tightness Moisture Migration

Image Source: Study by Fraunhofer Institute for Building Physics IBP

© Passive House Institute US 2014

Infiltration vs. Diffusion

Passive House Institute US

Infiltration = In Quickly

© Passive House Institute US 2014

Diffusion = Out

SLOOOWLY

3. Passive Sensible and Latent Cooling Strategies

Passive Cooling Strategies

Passive House Institute US

- Shading
 - Trees, overhangs, reveal shading, in-set windows
 - Especially South & West
- Attach a garage or buffer zone to south or west
- Ventilation
 - Vent the roof
 - Cross ventilate
- Daylighting to the North
- Thermal mass
- Phase Change Materials

Passive Design Cooling Strategies

Passive House Institute US

PHIUS

Passive Cooling

(Image Source: passive-on.org)

Ground cooling

Ground Temperature @ 10-13 ft = Annual Mean Air Temperature ±4 ºF

Source: Zehnder Heat Recovery Bypass

Night-time cooling

Radiative cooling

Evaporative cooling (more for dry climates)

Passive Cooling Strategies

Passive House Institute US

• Utilize the sun angle

Exterior Shading Devices

Passive House Institute US

Venetian Blinds, trellises, overhangs, balconies, decks, trees etc.

PHIUS+ Certified Konkol Passive House Hudson, WI

http://www.warema.com

Passive Latent Cooling Strategies

Passive House Institute US

- Not nearly as many
- Using insulation with hygric buffering (to reduce peak latent loads)
- Latent loads are largely independent from insulation levels, unlike sensible cooling loads and heating loads
- Earth coupling: Earth is endless heat sink
 - Earth tube
 - Subsoil heat exchanger
 - 'pre-cooling' supply air

 Now that you've dramatically reduced the heating and sensible cooling loads with passive strategies, how do you satisfy a high latent load?

4. Active Sensible and Latent Cooling Strategies (Mechanical Systems)

What loads need to be covered?

Passive House Institute US

Heating (sometimes) Cooling (reduced) Dehumidification

Mini-split systems

Ducted into ventilation air, duct into own system, or stand-alone

Samsung EH slim ducted Mini-Split, integrated in ventilation ductwork

Samsung Mini-Split Air-to-Air Heatpump 20 SEER, point source

(Images:http://compressors.danfoss.com/)

© Passive House Institute US 2014

Mini-split systems

- Issues with removing latent loads when no sensible loads are present
- Some equipped with "dehumidify mode"
- <u>Daikin Quaternity</u> independently controllable RH and temperature settings

ADVANCED FEATURES THAT MAKE A DIFFERENCE

Feel the Difference

Utilizing intelligent indoor heat exchanger technology, dehumidification can be achieved by maintaining room temperature and controlling humidity to a relative setting. Whether dehumidifying is needed on a hot summer day or a warm rainy night, Quaternity can provide a refreshingly cool experience while maintaining year round comfort.

Dehumidification

- Stand-alone dehumidifiers
 - Duct into supply air OR
 - Single point supply
- Split coil dehumidifiers
 - Newer technology

- No additional heat load added to interior space, released from outdoor condensing unit
- First stage cooling

Mechanical Ventilation Options

Passive House Institute US

- Continuous Ventilation with heat recovery:
 - Heat/Energy Recovery Ventilator
- Exhaust only ventilation:
 - If the climate is mild enough that it doesn't need the heat recovery
- Demand Controlled ventilation:
 - Defined by IAQ set points, occupancy (CO2), or temperature
 - Reduces redundant ventilation

Options for Mechanical Systems

Passive House Institute US

- Future options:
 - Using more demand controlled ventilation to reduce redundant ventilation (ventilate for the people, not for the building)
 - Mini-split systems with dehumidification only modes, separate RH set-points
 - ERV's with higher latent efficiency
 - PHIUS Tech Committee protocol: In ASHRAE Climate Zone 3 and below, the summer test point data from HVI must be used, and the values must be separated into sensible and latent efficiencies

5. Capabilities of WUFI Passive/PHPP Static Modeling

Inputs critical to calc'ing cooling demand

Passive House Institute US

- **Material properties:** thermal resistance (R/in) is only value considered
 - no specific heat capacity, or anything related to moisture transmission/storage
- Thermal Mass: Single entry applied to whole building based on # of heavy surfaces per room
- Ventilation: Only option is continuous rate
- **Internal heat gains:** default or calculated value, but single constant value
 - Single default value for humidity loads [0.00041 lb/ft2.hr]

6. Capabilities of WUFI Passive Dynamic Modeling

Capabilities of WUFI Passive

Passive House Institute US

Material properties:

- Porosity
- Specific Heat capacity
- Permeability
- Water absorption coefficient
- → Critical to determine latent loads
 - All capabilities of WUFI
 1D, but for whole building simulation

Name	Thermal conductivity [Btu/hr ft °F]	Density [lb/ft³]	Heat capacity [Btu/lb*F]) かか Material: Cellulose Insulation Bulk density [ib/ft*]	3.433538554	Turinet built in maintaine	0.412024020
Cellulose Fiber (heat cond.: 0,04 W/mK)	0.023	4.37	0.597		3.433538554 89229	Typical built-in moisture [lb/ft ^a]	587075 0.412024620
Cellulose Fibre Insulation	0.021	1.873	0.449	Porosity	0.93	Reference water content [lb/ft*]	587075
Cellulose Insulation	0.021	3.434	0.608	Specific heat capacity [Btu/lb°F]	0.007023901 02035 0.020027134	Free water saturation [lb/ft ^a]	30.83941902 03053 0.000796507
Cellulose Insulation - LW - R3.7	0.023	3.434	0.608	Thermal conductivity [Btu/hr ft °F]	215042	Water absorption coefficient [lb/in ² s ^{0.5}]	202132
				Permeability [perm in]	64.4	Thermal conductivity supplement [%/M%]	1
						Color	
Thickness [n] Defa from TU Dres Default value for th supplement		themal cond	uctivity	L 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.8 1	66 65 64 64 62 61 62 61 62 61 62 61 62 61 62 61 62 61 62 64 64 64 64 64 64 64 64 64 64	

Capabilities of WUFI Passive

Passive House Institute US

Thermal Mass:

- Calculated directly by assemblies input into whole building simulation
- Interior walls modeled and accounted for
 - Zone distribution
 - For all layers, requires:
 - Density
 - Specific heat capacity
 - Temperature dependent enthalpy (for PCM)
- "Massive" materials: water, concrete, adobe, rammed earth, stone, PCM's
- Utilizing thermal mass is most challenging in hot humid climates where night temperatures remain elevated.
 - Strategically locate to avoid overheating, no direct solar gain

Capabilities of WUFI Passive

sive House Institute US														
Natural Mechanical														
	Use d	ata from exte	emal file	,										
r Perio	ods —													
Nr.	Nr. Begin En 1 1/1/2013 1/1/2016		End	Мо		We	Th	Fr	Sa	Su				
1			/1/2016		✓	•	•	•	☑	•	🗋 Nev	N		
2	1/1/2	013	1/1/2016		•	•	•	•				🗌 🐰 Delete		
3	3 1/1/2013 1/1/2016		16						✓	✓	🗋 Сору			
												🖺 Inse		
												Ne	w/Insert	:
													>>	
- Day-	-profile	e Value					- Ventila	ation co	ntrol					
Ho	our	1/hr	•				Temperature control (TC)							
0				New			No control Temperature control (TC)							
9	0.2			X Delete			Relative humidity control (RHC) CO2-Control (CO2-C)							
17		0.3	🗎 Сору											
22	22 0.2		<u> Insert</u>											
	New													
					»>									
Mec	Mechanical ventilation [1/hr] Daily average: 0.26													
0.3														
	0.2	8								+				
	0.2	6					\rightarrow			+				
	0.2	4								+				
	0.2	2												
	0.2 0 2 4 6 8 10 12 14 16 18 20 22 24 Time[h]													
1								6.0						

Ventilation:

- Daily profiles
- Hourly profiles
- Realistic "schedule" for low rates and boost modes

Capable of modeling demand controlled ventilation by:

- Temperature set points
- Relative Humidity Levels
- CO2 maximums

Passive House Institute US

Capabilities of WUFI Passive

Internal Heat Gains:

- Hourly & Daily profiles
- Activity & age of occupants
- Convective heat, radiant heat, moisture, and CO2 entries

In	Internal loads calculator												
	Loa	ds											
	Nr.	Specification Huma		Count	Count [Bt		Heat radiant [Btu/hr]		Moisture [g/hr]		CO2 [g/hr]		
					Specific	total	Specific	total	Specific	total	Specific	total	
	1	Adult, sitting person, relaxed	✓	2	221.789	443.58	122.837	245.67	43	86	30.3	60.6	🗋 New
	2	Adult, sitting person, working	✓	1	272.971	272.97	139.898	139.9	59	59	36.3	36.3	👗 Delete
	3	Kid, kindergarden, 3 - 6 years	✓	1	68.243	68.24	40.946	40.95	90	90	32	32	🖹 Сору
	4	Kid, School, 14 - 16 years	✓	1	204.728	204.73	102.364	102.36	50	50	33.8	33.8	🖺 Insert
													New/Insert:
													after 🔻
					Σ	989.52	Σ	528.882	Σ	285	Σ	162.7	
										ОК		Cancel	Help

'assive House Institute US 2014

7. Two Humid Climate Case Studies

Passive House Institute US

LeBois House – Lafayette, LA

LeBois House (2009)

Passive House Institute US

PHIUS

Element	Details						
Wall – R 28	2x6" (partial 2x8") stud wall filled with open cell spray foam (Icynene) with 1" of exterior Polyiso Board.						
Floor – R 16.5	3" of XPS Board under 4" of Concrete below insulated crawlspace						
Roof - R55	12" TJI filled with open cell spray foam (Icynene) with 2" of exterior Polyiso Board.						
Windows – R5.2 overall	ThermaProof w/ Alpen Glass SHGC: 0.29, 0.24						
Ventilation	Ultimate Air RecopuAerator 200DX ERV						
Heating system	Mini Split Heat Pump						
Domestic hot water	Heat Pump						
Location	Lafayette, LA						

© Passive House Institute US 2013

PHIUS

LeBois House: Mechanical Schematic

Map of the first certified Passive Houses's in the United Ststes. LeBois is the greensquare in LA.

LeBois House: PHPP Results

Energy Demands with Reference to the Treat	ted Floor Area			
Treated Floor Area:	1290	ft²		
	Applied:	Monthly Method	PH Certificate:	Fulfilled?
Specific Space Heat Demand:	2.52	kBTU/(ft²yr)	4.75 kBTU/(ft²yr)	Yes
Pressurization Test Result:	0.57	ACH ₅₀	0.6 ACH ₅₀	Yes
Specific Primary Energy Demand (DHW, Heating, Cooling, Auxiliary and Household Electricity):	36.8	kBTU/(ft²yr)	38.0 kBTU/(ft²yr)	Yes
Specific Primary Energy Demand (DHW, Heating and Auxiliary Electricity):	17.4	kBTU/(ft²yr)		
Specific Primary Energy Demand Energy Conservation by Solar Electricity:	15.9	kBTU/(ft²yr)		
Heating Load:	4.65	BTU/(ft ² hr)		
Frequency of Overheating:	40.4	%	over 77.0 °F	
Specific Useful Cooling Energy Demand:	4.69	kBTU/(ft²yr)	4.75 kBTU/(ft²yr)	Yes
Cooling Load:	3.83	BTU/(ft ² hr)		

LeBois House: Latent Load

LeBois House: Data Collection

Passive House Institute US

	Instrument	Location/Description
A	Onset T/RH Logger	Outdoors, Shaded on North Side
B	Onset T/RH Logger	Bedroom 1
c	Onset T/RH Logger	Living Room, User Height
D	Onset T/RH Logger	Living Room, Near MS
E	Onset T/RH Logger	Living Room, High
F	Onset T/RH Logger	Bedroom 2
G	Onset T/RH Logger	Bedroom 3
н	Onset T/RH Logger	ERV, fresh inlet
L	Onset T/RH Logger	ERV, fresh tempered
J.	Onset T/RH Logger	ERV, exhaust inlet
ĸ	Onset T/RH/Ext Logger	ERV, exhaust outlet
L	Onset T/RH Logger	Crawlspace
LZ	External CT for amperage	ERV current (calculate energy use)
М	TED5004 MTU/CT #1	House Net Energy
N	TED5004 MTU/CT #2	PV Generation
0	TED5004 MTU/CT #3	Mini-Split
P	TED5004 MTU/CT #4	DHW

... and the human element ...

LeBois House: Actual Energy Usage

Passive Hou:

	Total Energy Use [kWh]	Mini- Split [kWh]	Net Energy [kWh]	PV Generation [kWh]
Mar 2011	576	1	178	-398
Apr 2011	715	113	281	-434
May 2011	555	94	30	-525
Jun 2011	694	262	235	-458
Jul 2011	669	249	296	-373
Aug 2011	822	284	328	-493
Sep 2011	988	207	557	-431
Oct 2011	621	61	199	-422
Nov 2011	652	24	360	-292
Dec 2011	439	14	227	-212
Jan 2012	735	17	480	-255
Feb 2012	720	15	502	-218
12-Month		1,342		
Total [kWh/a]	8,185	(cool=1,271 heat=71)	3,674	-4,511
Specific 12-Month Total [kWh/m ² a]	68.3	11.2 (cool=10.6 heat=0.59)	30.7	-37.7

Table 1. Monthly total electrical energy use and generation.

LeBois House: Results Comparison

LeBois House: Performance Overview

Passive House Institute US

-Heating rarely required ... actual use about 7% of predicted PHPP.

-Cooling more significant ... still only 70% of the predicted need

(Only sensible, doesn't include latent demand or energy use due to the dehumidifier)

-Primary energy approximately 50% greater than PHPP predicted.

-Annual latent is estimated to be 15 kWh/m2/yr (4.75 kBTU/ft2.yr)(to no quota).

Circumstances:

- 83% spec'd for heat recovery efficiency, only 35% measured.
 Probably should have modeled with summer efficiency value
- Student life & plug loads

Abbate Case Study

- PHIUS+ Pre-Certified Project
- Austin, TX the state of Bet with the South -1:12 PTCH-STANDAG SZAW WETAL HOOF SOUTH ELEVATION 12K12 CONC -COL (TYP) EAST ELEVATION And other the NORTH ELEVATION 2.0:12 PFOH COMP SHINGLES PER SPECS \sim WEST ELEVATION

Abbate: Modeled Results

Passive House Institute US

PHPP

Energy Demands with Reference to the Trea	ated Floor Are	a	
Treated Floor Area:	1130	ft ²	
	Applied:	Monthly Method	_
Specific Space Heat Demand:	2.22	kBTU/(ft²yr)	
Pressurization Test Result:	0.60	ACH ₅₀	
Specific Primary Energy Demand (DH¥, Heating, Cooling, Auxiliary and Household Electricity):	35.9	kBTU/(ft²yr)	
Specific Primary Energy Demand (DH¥, Heating and Auxiliary Electricity):	15.7	kBTU/(ft²yr)	
Specific Primary Energy Demand Energy Conservation by Solar Electricity:		kBTU/(ft²yr)	j
Heating Load:	4.00	BTU/(ft ² hr)	
Frequency of Overheating:		%	over
Specific Useful Cooling Energy Demand:	4.56	kBTU/(ft²yr)	
Cooling Load:	2.71	BTU/(ft ² hr)	

WUFI Passive - Static

PASSIVEHOUSE REQUIREMENTS

Certificate criteria:	Euro	pean								
Heating demand										
Specific:	2.1	kBtu/ft²yr								
total:	2348.7	kBtu/yr	Ó	1 2	3	4	5	6	7 8	9
peak (month):	0.9	kBtu/ft²								
Cooling demand										
Specific:	9.6	kBtu/ft²yr								
total:	10808	kBtu/yr	0	1 2	3	4	5	6	7 8	9
peak (month) - sensible:	1.6	kBtu/ft²								
latent:	5	kBtu/ft²yr								
Heating load										
Specific:	3.8	Btu/hr ft ²								
total:	4316.3	Btu/hr	0	1	2	3	•	4	5	6
Cooling load										
Specific:	2.7	Btu/hr ft ²								
total:	3059	Btu/hr	0	1	2	3		4	5	6
Primary energy										
Specific:	34.7	kBtu/ft²yr								
total:	39232.3	kBtu/yr	0	10	20	30	40	50	60	70
Air tightness ACH50	0.6	1/hr	0	0.2	0.4	0.6	i	0.8	1	1.2

Abbate: Slab Assembly

Th He	embly (Id.3): Slab on Grade w/interior Rigid omogenous layers hermal resistance: 6.683 hr ft² °F/Btu eat transfer coefficient(U-Value): 0.13 Btu/hr ft² °F					
Nr.	Material/Layer (from outside to inside)	ρ [lb/ft³]	c [Btu/lb°F]	λ [Btu/hr ft °F]	Thickness [in]	Color
1	Concrete	131.35	0.19	1.1558	4	
2	Extruded Polystyrene Insulation	1.79	0.35	0.0146	1	
			+			

Abbate: Foundation Detail

Abbate: Wall Assembly

Passive House Institute US

Inł	nomogenous layers					
Th	ermal resistance: 41.486 / 43.916 hr ft² °F/Btu (EN ISO 6946	6 / homogenou	is layers			
	eat transfer coefficient(U-Value): 0.02 Btu/hr ft² °F ickness: 14.682 in					
Nr.	Material/Layer (from outside to inside)	ρ [lb/ft³]	c [Btu/lb°F]	λ [Btu/hr ft °F]	Thickness [in]	Color
1	Fibrecementboard	100.51	0.2	0.0751	0.315	
2	Air Layer 25 mm	0.08	0.24	0.0896	0.984	
3	Spun Bonded Polyolefin Membrane (SBP)	27.97	0.36	1.3867	0.008	
4	OSB 3 (oriented strand board)	37.14	0.41	0.0606	0.5	
5	Low Density Glass Fibre Batt Insulation	5.49	0.2	0.025	3.5	
6	Low Density Glass Fibre Batt Insulation	5.49	0.2	0.025	5.5	
7	Low Density Glass Fibre Batt Insulation	5.49	0.2	0.025	3.5	
8	Interior Gypsum Board	39.02	0.21	0.0924	0.375	
	Exchange	materials				
9	Softwood	24.97	0.36	0.0651		

Abbate: Vented Roof Assembly

Inl	nomogenous layers					
Th	ermal resistance: 51.898 / 54.418 hr ft² °F/Btu (EN ISO 6946	/ homogenou	ıs layers) 🎢			
	eat transfer coefficient(U-Value): 0.02 Btu/hr ft² °F					
Nr.	Material/Layer (from outside to inside)	ρ [lb/ft³]	c [Btu/lb°F]	λ [Btu/hr ft °F]	Thickness [in]	Color
1	OSB 3 (oriented strand board)	37.14	0.41	0.0606	0.5	
2	Low Density Glass Fibre Batt Insulation	5.49	0.2	0.025	1.5	
3	Low Density Glass Fibre Batt Insulation	5.49	0.2	0.025	9	
4	Low Density Glass Fibre Batt Insulation	5.49	0.2	0.025	4	
	Low Density Glass Fibre Batt Insulation	5.49	0.2	0.025	1.5	
5	Interior Gypsum Board	39.02	0.21	0.0924	0.5	
_						
_	Exchange	materials				
5 6 7	Exchange Softwood	materials 24.97	0.36	0.052		

Abbate: Mechanical Schematic

Passive House Institute US

- Mini-split Heat Pump:
- Daikin Quaternity
- Single head, centrally located Dehumidifier:
- Feeds directly into main living space

GE GeoSpring Heat Pump Water Heater

Passive House Institute US

8. Dynamic Modeled Results

WUFI Passive Dynamic Setup

- Passive House Institute US
 - Design Conditions:
 - Interior temperatures 68-77F
 - Relative Humidity 40-60%
 - Infiltration: 0.6ACH @ 50 Pascal (PH Level)
 - Ventilation:
 - Natural 0.05 ACH
 - Mechanical 0.3 ACH
 - Internal Sources
 - 2 adults, mild activity
 - 1 child 3-6yrs old

Abbate: Moisture Flows

Passive House Institute US

WUFI® PASSIVE

Abbate: Moisture Flows

Passive House Institute US

Completely vapor closed all assemblies

Abbate: In Chicago

Passive House Institute US

• Same house, moved to Chicago

24 Hour Moisture Flows

Passive House Institute US

June 1

December 1

Comfort: Air temperature and Relative Humidity

Passive House Institute US

WUFI® PASSIVE

Case with dehumidification

© Passive House Institute US 2014

Operative Temperature and Humidity Ratio:

Plotted on ASHRAE comfort chart

P

Temperature

Comfort: Radiant Conditions

Dehumidification [lb/hr]

Heating/Cooling, Latent Heat [kBTU/hr]

Passive House Institute US

Static Results: Heating Load: 4.316 kBTU/hr Cooling Load: 3.059 kBtu/hr

Static Model incapable of calculating latent load Latent Load: ~4 kBTU/hr

PHIUS

Passive House Institute US

Heating & Cooling: March

Allows you to analyze swing seasons, and optimize glazing conditions. Projects with a lot of large windows will see more dramatic effects in this analysis.

Climate on the Move

PHIUS

Passive House Institute US

Source: www.globalchange.gov

What to take away

- Latent loads are difficult to manage in low load homes
- We may need more efficient mechanical systems to deal with these loads (if we want to meet the current PH standard)
- The majority of the latent cooling demand can be attributed to ventilation and infiltration, there is little (though some) you can do to the envelope
- Dynamic modeling is essential for assessing latent loads because of the complexity of moisture flows, storage, and transport

Thanks!

Passive House Institute US

Questions?