

Passive House Institute US

Passive building in Hot and Humid Climates

Lisa White

Overview

1. Thermal Comfort

Passive House Institute US

- 2. Drivers of sensible and latent cooling loads
- 3. Passive cooling strategies
- 4. Active cooling strategies
- 5. Capabilities of WUFI Passive static
- 6. Capabilities of WUFI Passive dynamic
- 7. Two Humid Climate Case Studies
- 8. WUFI Passive Dynamic Modeled Results

Passive House Institute US

1. Thermal Comfort

Thermal Comfort Factors

PHYSICAL FACTORS

- Clothing CLO
- Activity level MET

USER FACTORS

- Clothing insulation
- Metabolic activity
- State of mind

MENTAL

Passive House Institute US

• Experiences, expectations, influence of other conditions **ENVIRONMENTAL FACTORS**

- Air temperature
- Relative humidity
- Air speed
- Radiant conditions

2. Main drivers of sensible and latent cooling loads in buildings

Sensible cooling drivers in buildings

- Internal loads: plug loads, cooking, etc.
- Occupants
- Solar gains through transparent components
- Transmission through opaque components
- Natural Ventilation
- Mechanical Ventilation
- Infiltration

Latent cooling drivers in buildings

- Internal loads
- Occupants
- Exchange through opaque partitions
- Natural Ventilation
- Mechanical Ventilation
- Infiltration

Passive Solar Opportunities (and Challenges)

Passive House Institute US

Solar energy: High potential in the U.S.

Germany is the world's largest solar market, despite a climate less conducive to solar power than the United States. A solar panel placed in Ohio will produce 20-25% more energy than the exact same panel in Germany, due to climate variances.

VLI: "the load generated by one cubic foot per minute of fresh air brought from the weather to space-neutral conditions over the course of one year"

Passive Hous

Fig. 1: Map of Ventilation Load Indexes (VLI) for selected continental U.S. locations

© Passive House Institute US 2014 10

Air-tightness *Moisture Migration*

Image Source: Study by Fraunhofer Institute for Building Physics IBP

Infiltration vs. Diffusion

Passive House Institute US

© Passive House Institute US 2014 12

SLOOOWLY **!**!

Infiltration = In Quickly \wedge Diffusion = Out

3. Passive Sensible and Latent Cooling Strategies

Passive Cooling Strategies

Passive House Institute US

- Shading
	- Trees, overhangs, reveal shading, in-set windows
	- Especially South & West
- Attach a garage or buffer zone to south or west
- Ventilation
	- Vent the roof
	- Cross ventilate
- Daylighting to the North
- Thermal mass
- Phase Change Materials

Passive Design Cooling Strategies PHIUS

Passive House Institute US

Passive Cooling

(Image Source: passive-on.org)

Ground cooling Source: Zehnder

Ground Temperature @ 10-13 ft = Annual Mean Air Temperature ±**4 ºF**

Abluft aus der **Außenluft Nohnung** Zuluft in die Fortluft **Mohnung** Abluft aus der Wohnung Außenluft Bypass geschlossen Zuluft in die pnunfoW

Heat Recovery Bypass

Night-time cooling

Radiative cooling

Evaporative cooling (more for dry climates)

Passive Cooling Strategies

Passive House Institute US

• Utilize the sun angle

Exterior Shading Devices

Passive House Institute US

Venetian Blinds, trellises, overhangs, balconies, decks, trees etc.

PHIUS+ Certified Konkol Passive House Hudson, WI

http://www.warema.com

Passive Latent Cooling Strategies

Passive House Institute US

- Not nearly as many
- Using insulation with hygric buffering (to reduce peak latent loads)
- Latent loads are largely independent from insulation levels, unlike sensible cooling loads and heating loads
- Earth coupling: Earth is endless heat sink
	- Earth tube
	- Subsoil heat exchanger
	- 'pre-cooling' supply air

• Now that you've dramatically reduced the heating and sensible cooling loads with passive strategies, how do you satisfy a high latent load?

4. Active Sensible and Latent Cooling Strategies (Mechanical Systems)

What loads need to be covered?

Passive House Institute US

1. Heating (sometimes) 2. Cooling (reduced) 3. Dehumidification

Mini-split systems

Passive House Institute US

- Ducted into ventilation air, duct into own system, or stand-alone

Samsung EH slim ducted Mini-Split, integrated in ventilation ductwork

Samsung Mini-Split Air-to-Air Heatpump 20 SEER, point source

(Images:http://compressors.danfoss.com/)

Mini-split systems

- Issues with removing latent loads when no sensible loads are present
- Some equipped with "dehumidify mode"
- Daikin Quaternity independently controllable RH and temperature settings

ADVANCED FEATURES THAT MAKE A DIFFERENCE

Feel the Difference

Utilizing intelligent indoor heat exchanger technology, dehumidification can be achieved by maintaining room temperature and controlling humidity to a relative setting. Whether dehumidifying is needed on a hot summer day or a warm rainy night, Quaternity can provide a refreshingly cool experience while maintaining year round comfort.

Dehumidification

- Stand-alone dehumidifiers
	- Duct into supply air OR
	- Single point supply
- Split coil dehumidifiers
	- Newer technology

- No additional heat load added to interior space, released from outdoor condensing unit
- First stage cooling

Mechanical Ventilation Options

- Continuous Ventilation with heat recovery:
	- Heat/Energy Recovery Ventilator
- Exhaust only ventilation:
	- If the climate is mild enough that it doesn't need the heat recovery
- Demand Controlled ventilation:
	- Defined by IAQ set points, occupancy (CO2), or temperature
	- Reduces redundant ventilation

Options for Mechanical Systems

Passive House Institute US

• Future options:

- Using more demand controlled ventilation to reduce redundant ventilation (ventilate for the people, not for the building)
- Mini-split systems with dehumidification only modes, separate RH set-points
- ERV's with higher latent efficiency
	- PHIUS Tech Committee protocol: In ASHRAE Climate Zone 3 and below, the summer test point data from HVI must be used, and the values must be separated into sensible and latent efficiencies

5. Capabilities of WUFI Passive/PHPP Static Modeling

Inputs critical to calc'ing cooling demand

Passive House Institute US

- **Material properties:** thermal resistance (R/in) is only value considered
	- no specific heat capacity, or anything related to moisture transmission/storage
- **Thermal Mass:** Single entry applied to whole building based on # of heavy surfaces per room
- **Ventilation:** Only option is continuous rate
- **Internal heat gains:** default or calculated value, but single constant value
	- Single default value for humidity loads [0.00041 lb/ft2.hr]

6. Capabilities of WUFI Passive Dynamic Modeling

Capabilities of WUFI Passive

Passive House Institute US

Material properties:

- **Porosity**
- Specific Heat capacity
- Permeability
- Water absorption coefficient
- \rightarrow Critical to determine latent loads - All capabilities of WUFI 1D, but for whole building simulation

Capabilities of WUFI Passive

Passive House Institute US

Thermal Mass:

- Calculated directly by assemblies input into whole building simulation
- Interior walls modeled and accounted for
	- Zone distribution
		- For all layers, requires:
			- Density
			- Specific heat capacity
			- Temperature dependent enthalpy (for PCM)
- "Massive" materials: water, concrete, adobe, rammed earth, stone, PCM's
- Utilizing thermal mass is most challenging in hot humid climates where night temperatures remain elevated.
	- Strategically locate to avoid overheating, no direct solar gain

Capabilities of WUFI Passive

Ventilation:

- Daily profiles
- Hourly profiles
- Realistic "schedule" for low rates and boost modes

Capable of modeling demand controlled ventilation by:

- Temperature set points
- Relative Humidity Levels
- CO2 maximums

Passive House Institute US

Capabilities of WUFI Passive

Internal Heat Gains:

- Hourly & Daily profiles
- Activity & age of occupants
- Convective heat, radiant heat, moisture, and CO2 entries

7. Two Humid Climate Case Studies

Passive House Institute US

LeBois House – Lafayette, LA

LeBois House (2009)

Passive House Institute US

PHIUS

LeBois House: Mechanical Schematic

Map of the first certified Passive
Houses's in the United Ststes.
LeBois is the greensquare in LA.

LeBois House: PHPP Results

Passive House Institute US

LeBois House: Latent Load

Passive House Institute US

LeBois House: Data Collection

Passive House Institute US

© Passive House Institute US 2014 41

Location/Description

Living Room, User Height

Living Room, Near MS

Living Room, High

Bedroom 1

Bedroom 2

Bedroom 3

Crawlspace

ERV, fresh inlet

ERV, fresh tempered

ERV, exhaust inlet

ERV, exhaust outlet

House Net Energy

PV Generation

Mini-Split

DHW

Outdoors, Shaded on North Side

ERV current (calculate energy use)

… and the human element …

LeBois House: Actual Energy Usage

Passive Hou:

Table 1. Monthly total electrical energy use and generation.

LeBois House: Results Comparison

Passive House Institute US

Cooling

Heating

15

8

10.6

 0.6

LeBois House: Performance Overview

Passive House Institute US

-Heating rarely required … actual use about 7% of predicted PHPP.

-Cooling more significant … still only 70% of the predicted need

(Only sensible, doesn't include latent demand or energy use due to the dehumidifier)

-Primary energy approximately 50% greater than PHPP predicted.

-Annual latent is estimated to be 15 kWh/m2/yr (4.75 kBTU/ft2.yr)(to no quota).

Circumstances:

- 83% spec'd for heat recovery efficiency, only 35% measured. Probably should have modeled with summer efficiency value
- Student life & plug loads

Abbate Case Study

Passive House Institute US

- PHIUS+ Pre-Certified Project
- Austin, TX **MARINE** $100 - 100$ - 1 1:12 PTCH SOUTH ELEVATION 12012 CONC -
COL (TIP) EAST ELEVATION na sita da
Istual straige NORTH ELEVATION 2.5:12 PFGH
COMP SHINGLES
PER SPECIE ‴ □∃ WEST ELEVATION

Abbate: Modeled Results

Passive House Institute US

PHPP

WUFI Passive - Static

total:

total:

total:

total:

total:

Air

-6

 $\overline{12}$

Abbate: Slab Assembly

Passive House Institute US

Abbate: Foundation Detail

Passive House Institute US

Abbate: Wall Assembly

Passive House Institute US

Abbate: Vented Roof Assembly

Passive House Institute US

Abbate: Mechanical Schematic

Passive House Institute US

Mini-split Heat Pump:

- Daikin Quaternity
- Single head, centrally located Dehumidifier:
- Feeds directly into main living space

GE GeoSpring Heat Pump Water Heater

Passive House Institute US

8. Dynamic Modeled Results

WUFI Passive Dynamic Setup

- Passive House Institute US
	- Design Conditions:
		- Interior temperatures 68-77F
		- Relative Humidity 40-60%
		- Infiltration: 0.6ACH @ 50 Pascal (PH Level)
		- Ventilation:
			- Natural 0.05 ACH
			- Mechanical 0.3 ACH
		- Internal Sources
			- 2 adults, mild activity
			- 1 child 3-6yrs old

Abbate: Moisture Flows

Passive House Institute US

WUFI® PASSIVE

Abbate: Moisture Flows

Passive House Institute US

• Completely vapor closed all assemblies

Abbate: In Chicago

Passive House Institute US

PH

• Same house, moved to Chicago

24 Hour Moisture Flows

Passive House Institute US

June 1 December 1

Comfort: Air temperature and Relative Humidity

Passive House Institute US

WUFI® PASSIVE

Operative Temperature and Humidity Ratio:

Plotted on ASHRAE comfort chart

P

Temperature

Comfort: Radiant Conditions

Dehumidification [lb/hr]

Passive House Institute US

Heating/Cooling, Latent Heat [kBTU/hr]

Passive House Institute US

Static Results: Heating Load: 4.316 kBTU/hr Cooling Load: 3.059 kBtu/hr

Static Model incapable of calculating latent load Latent Load: ~4 kBTU/hr

Passive House Institute US

Heating & Cooling: March

Allows you to analyze swing seasons, and optimize glazing conditions. Projects with a lot of large windows will see more dramatic effects in this analysis.

Climate on the Move

PHIUS

Source: www.globalchange.gov

What to take away

- Latent loads are difficult to manage in low load homes
- We may need more efficient mechanical systems to deal with these loads (if we want to meet the current PH standard)
- The majority of the latent cooling demand can be attributed to ventilation and infiltration, there is little (though some) you can do to the envelope
- Dynamic modeling is essential for assessing latent loads because of the complexity of moisture flows, storage, and transport

Thanks!

Passive House Institute US

Questions?

C Passive House Institute US 2014 C And All Contract Contrac