

## **Passive Building Foundations**

# **Course Syllabus**

- Module 1 | Introduction
- Module 2 | Building Science
- Module 3 | Passive Building
- Module 4 | Phius Standards
- Module 5 | Phius Certification Process
- Module 6 | The Business Case
- Module 7 | Policy
- Module 8 | Case Studies
- Module 9 | Beyond the Building



## 1 | Introduction

## Who is Phius?

Overview Mission and Goals

## **History of Phius**

Passive Building Science Pioneers Passive House or Passive Building?

## What Does Phius Do?

Research and Standard Setting Building Certification Product Certification Training and Education Professional Certification Development of Tools and Resources Advancing Policy

## **Phius Alliance**

What is the Phius Alliance?

## **Events**

PhiusCon Annual Summit Webinars

## 2 | Building Science

### Background

Safety, Regulations, and Building Code Building Science is All Around Us

### **Heat Flow**

Heat Transfer Sources of Heat in Buildings Controlling Heat Flow

#### **Air Flow**

Air Flow



How Much Air? Controlling Air Flow

#### Moisture

Moisture in the Air Moisture Flow Controlling Moisture Flow Condensation and Mold Growth

## **Comfort & Occupant Impact**

Comfort & Indoor Air Quality

## 3 | Passive Building

## **Introduction & Learning Objectives**

Introduction to Passive Building

## **Passive Building Principles**

Control Strategies Passive Building Principles Climate Specific Design & Construction

## **Passive Building Physics**

Key Terminology and Concepts Heat Losses and Gains in Buildings Energy Modeling Tools & Purpose

## **High Performance Building Enclosures**

High Performance Opaque Enclosures High Performance Glazing & Fenestration

## **High Performance Mechanical Systems**

High Performance Ventilation Systems High Performance Space Conditioning Systems High Performance Hot Water Systems

#### Types of Passive Projects Residential, Non-Residential, New Construction & Retrofit

Carbon Emissions in Buildings

Decarbonization & Electrification



Categorizing Emissions Embodied Emissions Operational Emissions

## 4 | Phius Standards

### **Phius Standards**

Phius Standards & Certification Paths Overview of Requirements

#### **Phius Standard Requirements**

Passive Conservation Requirements Airtightness Requirements Appropriate Moisture Design Requirements Window Comfort Requirements Active Conservation Requirements 3rd-Party On-Site Inspection and Quality Assurance Electrification and Electric Vehicle Charging Infrastructure Renewable Energy

## 5 | Phius Certification Process

#### **Project Certification Process and Resources**

Certification Process & Milestones Roles of Phius Certified Professionals

#### **Project Certification Resources**

The Phius Certification Team Phius Certification Guidebook

## 6 | The Business Case

#### Financing

Incentives & Cost The Energy Services Business Model

### On the Horizon

Scaling & Prefabrication Grid & Future Impacts



## 7 | Policy

## Introduction

Background of Phius and Policy Learning Objectives

## **Primary Policy Avenues**

Incentive Programs Qualified Allocation Plans for Low Income Housing Tax Credits Building Energy Codes Federal Programs

## **Supporting Data**

Supporting Data The Phius Policy Database

**Next Steps & Future Policy** 

## 8 | Case Studies

**Doig River Cultural Center Case Study** 

The Homes at Anne M Lynch at Old Colony Phase Three C

**Fifth Street Passive House** 

Theresa Passive House

425 Grand Concourse

**Acton Passive House** 

## 9 | Beyond the Building

### Background

Introduction & Industry Trends The Existing Electrical Grid

## The Changing Electric Grid

The Changing Electric Grid Renewable Energy & Energy Storage



## Advancing Decarbonization

Renewable Energy for Buildings Electric Vehicles Grid Interactive Efficient Buildings Microgrids Low-Load Buildings