

Ophius Blank Paper to Passive

Empowering Early Feasibility Assessments

- WHAT is a feasibility study?
- WHY conduct a feasibility study?
- WHEN to conduct the feasibility study
- WHAT projects benefit from a feasibility study?
- HOW to conduct a feasibility study

What is a Feasibility Study?

- Early assessment of a project's ability to meet the Phius targets
- Compares a baseline case (ideally code), to a case that meets the Phius targets
- Drives design decisions
 - Identify areas of improvement early
- Establishes general target R-values / window performance / systems & efficiencies

fea·si·bil·i·ty stud·y

/ fēzə bilədē 'stədē/

noun

an assessment of the <u>practicality</u> of a proposed plan or method. "a feasibility study into the possibility of harnessing natural water power"

What is a Feasibility Study?

Feasibility Study Deliverables

- Completed WUFI file with two cases
 - Baseline case
 - Code (IECC 2021 or local requirements)
 - Phius-compliant case
 - With proposed design
- Comparison Report
 - Technical breakdown of the parameters of each case
- Feasibility Study Writeup
 - Notes, questions, and design recommendations for things that don't appear in the comparison report

What is a Feasibility Study

ilding Information			Units
Building Address:			
Phius Climate Data Set:	Philadelphia Inte	rnational Airport PA	
Exterior Envelope Area:	5,2	64.95	
Interior Conditioned Floor Area:			ft ²
(iCFA)	1,6	71.15	
Window-to-Wall Ratio:	(0.15	WWR
Number of Stories Above Grade:		3	
Number of Dwelling Units:		1	
Number of Bedrooms:		2	
odeling Information			Units
Fuel Type:	Ela	ctricity	onnes
Site to Source Energy Eactor	LIC	1.8*	
torior Envelope	Pacolino Caco	Philus CORE 2021	Unite
terior Envelope	Baseline Case	Philds CORE 2021	Units
Wall Type WY 18 Upinculated Barty Walls:	46.57 0.02	48.57 0.02	
Wall Type WA, IF * Offitisulated Farty Walls.	361(0.027	22.2 (0.02	
Wall Type W1 E - Third Floor:	20.3 / 0.047	26 32 / 0.037	Ravalue / Havalue
Wall Type W24 - Insulated Party Walls	9.4.(0.096	9.4 / 0.095	(effective)
Wall Type W2 - Typ AG Walls:	23.2 / 0.041	33.0 / 0.030	(encerce)
Wall Type W3 - Insulated Basement Walls:	20.8/0.046	20.8 / 0.046	
Existing Basement Slab:	Uninsulated	Uninsulated	
Casement Windows(Alpen Zenith):	0.155 / 0.33	0.155 / 0.33	
Fixed Windows (Alpen Zenith):	0.149 / 0.33	0.149 / 0.33	U-value / SHGC
Glazed doors (Aplen Tyrol):	0.179 / 0.333	0.179 / 0.333	
rtightness	2021 IECC	Phius CORE 2021	Units
Envelope Airtightness:	0.28	0.06	cfm50/ft ² (envelope
ghting	Baseline Case	Phius CORE 2021	Units
Interior:		597	kWb/wr
Exterior:		36.7	kinityi
pliances	Baseline Case	Phius CORE 2021	Units
Refrigerator:	445	445	Londo 6
Dishwasher:	270	270	kWh/yr
Clothes Washer:	120 / 0.27	120 / 2.7	kWh/yr / MEF
Clothes Dryer:	5.79	5.79	kWh/yr / MEF
scellaneous Electric Loads	Baseline Case	Phius CORE 2021	Units

What is a Feasibility Study?

Additional Feasibility Study Deliverables

- Compare & Estimate
 - Energy Bills (\$ & CO₂)
 - Don't forget to include hookup fees!
 - Up-front Cost (\$)
 - Return on Investment (ROI)
 - Include incentives gained
- Explain Qualitative Improvements
 - Comfort (quietness, no drafts etc..)
 - Indoor Air Quality
 - Durability
 - Resilience

Why conduct a Feasibility Study?

For the Client

- Understand the benefits of a Phius project
 - Cost savings / low energy bills
- Understand the general differences between a code-built project vs a Phius project

Why conduct a Feasibility Study?

For the Design Team

- Establish design requirements to achieve certification
 - Wall / Roof / Slab target R-values
 - Window comfort / condensation requirements
 - Mechanical system types and performance
- Assess the impact of design decisions & tradeoffs
- Get a head-start on compiling documentation for certification
- Identify areas of improvement that can still be changed since this is happening early in the design process, like the envelope configuration (i.e. reducing surface area via more compact, simplified envelope)

Why conduct a Feasibility Study?

Incentives

- Mass Save
- Know of others?

Pre-Construction Incentives

Incentive		Max. Value
Feasibility Study	Invoiced Feasibility costs up to	\$5,000
Energy Modeling	75% of energy modeling costs	\$500/unit, max.\$20,000
Pre-Certification	\$750/unit	N/A

- Projects must pre-certify (a.k.a. Design Certification through PHIUS or PHI) to qualify for full Passive House incentives
- Projects that do not pre-certify may participate in the Base or ENERGY STAR tiers.

When to conduct a Feasibility Study?

- As early into the design process as possible when decisions are still flexible
- Some things do need to be known, like project geometry
 - Can still be schematic, but enough to get in the ballpark of the actual envelope area
- Not ideal if the project is already breaking ground or in CD phase

When to conduct a Feasibility Study?

- At a minimum, a project team could conduct a feasibility study with basic floor plans and overall building sections (or floor to floor heights) established
- Occupancy should also be (mostly) known
 - Residential: Number of dwelling units / number of bedrooms
 - Nonresidential: Design (max) occupancy
- In general, the minimum inputs required to calculate the project's specific performance criteria targets are needed to conduct the study

Phius 2024 New Construction* Performance Criteria Calculator v24.1				
UNITS:	IMP	ERIAL (IP) 🗸		
BUILDING FUNCTION:	RESIDENTIAL			
STATE / PROVINCE	A	LABAMA 🗸		
CITY	ANNISTON METROPOLIT			
ASHRAE 169 Climate Zone	3A			
Envelope Area (ft²)	3,750.0			
iCFA (ft²)		1,500.0		
Dwelling Units (Count)	1			
Total Bedrooms (Count)		4		
Space Condition	ing Criteria			
Annual Heating Demand	5.2	kBtu/ft²yr		
Annual Cooling Demand	11.0	kBtu/ft²yr		
Peak Heating Load	4.7	Btu/ft ² hr		
Peak Cooling Load	2.5	2.5 Btu/ft ² hr		
Source Energy	Criteria			
Phius CORE	3775	kWh/person.yr		
Phius ZERO	0	kWh/person.yr		

Retrofit projects that qualify for the Phius REVIVE 2024 standard should refer to the Phius Certification Guidebook v24.1 for guidance and requirements.

What projects benefit from a Feasibility Study?

- All projects could benefit from a feasibility study!
- Crucial for determining the likelihood of achieving certification before registering the project
- Avoid certification hang-ups that could have been caught during early design

How to conduct a Feasibility Study

Common Hang-Ups

- Since feasibility studies should be conducted during early design, there are many unknowns
- Can be intimidating to start a WUFI file with so little information
- R-values: design vs effective
 - Be wary of steel studs!
- When in doubt, be conservative

Exceptions:

<u>Wood Framing Factor Method:</u> Use this method for typical wood-frame assemblies with no exterior continuous insulation.

- Model 25% of the cavity as framing for 16" o.c. assemblies
- Model 15% of the cavity as framing for 24" o.c. assemblies

<u>Metal Framing Deration Methods:</u> Choose one method below whenever metal framing is used.

Simple Method:

33% x R-value/in of the cavity insulation for 16" o.c. assemblies 39% x R-value/in of the cavity insulation for 24" o.c. assemblies

ASHRAE Method:

Apply a deration to the insulation layer containing metal framing in accordance with ASHRAE 90.1 Table A.

How to conduct a Feasibility Study

Additional Common Hang-Ups

- Fuel Switching (natural gas systems vs electric systems)
- Not sure where to start on R-values?
 - Prescriptive Snapshot or Map
- Mechanical Ventilation Rates
 - Code (exhaust only)
 - Phius Minimums
 - Local Jurisdiction Minimums
- Thermal Bridging
 - Placeholders are Ok!

Minimum TRE for E/HRVs 50%

Minimum Wall R-value

.

Minimum Roof R-value
71

Tips & Tricks for Feasibility Study Modeling: Geometry

Scenario: A project team wants to conduct a feasibility study with the following known parameters:

- Location: Providence, RI
- iCFA: 45,000 sf
- 60 1-bed units + some common spaces
- 3-stories
- 900 sf of commercial space at ground level
- Site oriented about east-west axis
- Target WWR: 0.3

Calculators

v24	1.1.1 - 2024.07				
Phius Water Pressure Booster		Required inputs		Calculated cells	
Pump Estimator			Opti	onal Inputs	Results
R	esults for WUFI Passive				
	Energy demand (rated):	1136	W		
	Period of Operation:	1.0	khr/yr		
P	oject Information				
	Building Height:	47.50	ft Water service to top-most wa		
	Number of Dwelling Units:	75			
	Optional Inputs with Defau	lt Assum	ption	S	
	Street Pressure:	30	psi	Default: 30	
	Pressure at fixture:	30	psi	Default: 30	
	Assumed friction losses:	10	psi	Default: 10	
	Pump Efficiency:	30%		Default: 30%	
	Motor Efficiency:	75%		Default: 75%	
	VFD Efficiency:	97%		Default 97%	

Temperature Reduction Factor & Auxiliary Energy Calculator

Inputs				
Type of Phius Climate Data	Country	State		
Typical	USA	МА		
Phius Cli	mate Location			
BOSTON L	OGAN INT ARE	۲۲		
Semi-Conditioned Space	e Name	Setpoint Temp. (F)		
Freeze Protection (stair,	bike, fire)	40		
Step 2: Enter the name of the semi-conditioned space, as well as the planned setpoint temperature of the space in the cells above.				
A	ttached Zones:	Create New		
	Name.	Freeze Protection (stair, bike, fire)		
Type of	attached zone:	Freeze Protection (stair, bike, fire) Unheated space		

v24.1.1 - 2024.10

Phius - Auxilliary Energy Estimation Calculator

Inputs						
Component type	Connection	R-value	Surface area (sf)	UxA		
Roof	Ambient	20	288	14.4		
Floor	Ground	1	288	288.0		
Wall	Ambient	9.9	1,440	145.5		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

Outputs for WUFI				
Name:	Freeze Protection (stair, bike, fire) Aux Energy			
Device Type:	Other			
Quantity:	1			
In conditioned space:	UNCHECKED			
Energy demand for WUFI (W):	970			
Period of Operation (khr/yr):	1			

Total - Interior Conditioned Floor Area

Phius ©2024

Total - Interior Conditioned Floor Area

Interior Conditioned Floor Area (iCFA)

iCFA is the interior-dimension (drywall-to-drywall) projected floor area of the conditioned space that meets the following parameters:

- Interior spaces at least 7' in height, measured from the interior finished surfaces that comprise the thermal boundary of the building.
- Spaces that are visually open-to-below such as elevator shafts and true double-height spaces shall not be counted.
- Other than open-to-below, the projected floor area of all spaces within the building shall count toward the iCFA measurement, including stairs, interior walls, columns, built-in furniture, etc...

iCFA Summary

Cellar: 985 sf 1st: 8,800 sf Mezzanine: 4,217 sf 2nd: 12,199 sf 3rd: 9,653 sf 4th: 12,199 sf 5th: 11,283 sf Roof: 731 sf **Total:** 60,067 sf

Where to Start with R-values

Baseline Case

- Most valuable start with IECC minimum requirements
 - Chapter R402.2

CLIMATE ZONE	FENESTRATION U-FACTOR ^{b, i}	SKYLIGHT ^b <i>U</i> -FACTOR	GLAZED FENE STRATION SHGC ^{b, e}	Ceiling <i>R</i> - Value	WOOD FRAME WALL R- VALUE [®]	MASS WALL <i>R</i> - VALUE ^h	FLOOR <i>R</i> - VALUE	BASEMENT ^{o,g} WALL <i>R-</i> VALUE	SLAB ^d <i>R</i> - VALUE & DEPTH	CRAWL SPACE ^{9,9} WALL <i>R</i> - VALUE
0	NR	0.75	0.25	30	13 or 0& 10ci	3/4	13	0	0	0
1	NR	0.75	0.25	30	13 or 0& 10ci	3/4	13	0	0	0
2	0.40	0.65	0.25	49	13 or 0& 10ci	4/6	13	0	0	0
3	.30	0.55	0.25	49	20 or 13& 5ci ^h or 0& 15ci ^h	8/13	19	5ci or 13 ^f	10ci, 2 ft	5ci or 13 ^f
4 except Marine	.30	0.55	0.40	60	30 or 20&5ci ^h or 13& 10ci ^h or 0&20ci ^h	8/13	19	10ci or 13	10ci, 4 ft	10ci or 13
5 and Marine 4	0.30 ⁱ	0.55	0.40	60	30 or 20&5ci ^h or 13& 10ci ^h or 0&20ci ^h	13/17	30	15ci or 19 or 13& 5ci	10ci, 4 ft	15ci or 19 or 13& 5c
6	0.30 ⁱ	0.55	NR	60	30 or 20&5ci ^h or 13& 10ci ^h or 0&20ci ^h	15/20	30	15ci or 19 or 13& 5ci	10ci, 4 ft	15ci or 19 or 13& 5c
7 and 8	0.30 ⁱ	0.55	NR	60	30 or 20&5ci ^h or 13&10ci ^h or 0&20ci ^h	19/21	38	15ci or 19 or 13& 5ci	10ci, 4 ft	15ci or 19 or 13& 5c

Modeling Feasibility Study Windows

- Windows have probably not been specified or selected at this point, so there wouldn't be any window data to use for WUFI
- To model whole-window performance based on IECC or Phius maximum requirements...

Example: A project team is in the early stages of design, and wants to model windows based on the maximum whole-window U-value to comply with the <u>Window Comfort Requirements</u>. They cannot exceed a whole-window U-value of 0.19 based on the tallest window in the project. To model this in WUFI, the team should enter the following:

- Glass U-value: 0.19
- SHGC: 0.15-0.4 (typ. whole-window range)
 - This can be adjusted as an intentional design decision to meet the performance criteria targets
- Frame width: 0.01"
- Frame U-value: 0.19
- Glazing-to-frame psi-value: 0 (included in whole window U-value)
- Psi-Installation: 0.03 (default)

This method "ignores" the frame inputs and calculates a whole-window U-value of 0.19. This is helpful when modeling for a feasibility study or before a final window selection has been made.

Where to Start with R-values

Phius Case

- Use the prescriptive climate map / prescriptive snapshot to over-estimate the required R-values for assemblies based on the project location
- Then, after the model is complete, insulation levels can be backed off

PROVIDENCE

Maximum SHGC

0.4

Minimum Projection Factor

NR

Minimum SRE for E/HRVs 0.79

Minimum TRE for E/HRVs 50%

Minimum Wall R-value

Minimum Roof R-value

71

Window Comfort & Condensation Risk

- <u>Window Comfort and</u>
 <u>Condensation v3.6</u>
- Use the tallest window in the project to establish the worst-case whole-window U-value requirement for the Phius-compliant case
- If you have storefronts & "typical" windows, complete the assessment for both types

CONDENSATION RISK

ISO 13788: Low Thermal Inertia Elements

Input Data:	Fenestration Type	- Select from Dropdown - N		
Class 2 typical	Input humidity class here	- Select from Drop	down - 🗸	
	Frame U-Value	0.00 B	TU/hr.ft ² .F	
	Safety Factor	15%	~	
Result:	Risk acceptably low?	Missing Da	ta	

Exceptions:

1. Pet doors are not required to pass the condensation resistance test

2. Exterior doors with ADA, egress, fire rating requirements may use the uninstalled whole door U-value

COMFORT REQUIREMENTS

Applies to vertical fenestration in all project types. For stacked windows, include the full height of all mulled windows. Windows >16' in height have the same U-value requirement as 16' tall windows

* Uninstalled whole window U-Value used. Do not include frame-to-wall psi-value for compliance.

Exceptions:

1. Windows in non 'regularly occupied' areas have no comfort requirement.

(ie. Entry lobby with no seating or corridors with only transient occupants.

2. ADA doors have no comfort requirement.

3. Review Appendix N-4 of the Phius Certification Guidebook for additional exceptions.

Does the Assembly need Derated?

- The following assembly characteristics would require a deration of the insulation layer affected
 - Wood / Steel studs
 - Easier to model wood studs directly in WUFI, but the 'deration' method can still be taken
 - Don't waste time trying to model steel studs in WUFI
 - Mechanically fastened continuous insulation layer
 - Unless recessed fasteners, or if fasteners are only used in the 'bottom' layer
 - Used to be only for CI
 <u>></u> 4", but is now required for all thicknesses (for Phius 2024)

I-3.1 Default Fastener Deration Values

Table I-3.1.0 Fastener Correction Derations					
Fastener Material	Continuous Insulation Thickness	Deration Requirement			
Stainless Steel	<4"	Derate R/in by 10%			
	≥4"	Derate R/in by 15%			
Mild and	<4"	Derate R/in by 25%			
Mild Steel	≥4"	Derate R/in by 35%			
Plastic or Thermally Broken	No fastener correction required				
Aluminum	Fastener Correction Calculator required.				

Process Tips:

• Project teams may submit a project-specific Fastener Correction Calculator for certification compliance.

• The % deration should be applied to the R/in of the exterior rigid continuous insulation layer in the WUFI assembly.

Exceptions:

<u>Wood Framing Factor Method:</u> Use this method for typical wood-frame assemblies with no exterior continuous insulation.

- Model 25% of the cavity as framing for 16" o.c. assemblies
- Model 15% of the cavity as framing for 24" o.c. assemblies

Metal Framing Deration Methods: Choose one method below whenever metal framing is used.

Simple Method:

33% x R-value/in of the cavity insulation for 16" o.c. assemblies 39% x R-value/in of the cavity insulation for 24" o.c. assemblies

ASHRAE Method:

Apply a deration to the insulation layer containing metal framing in accordance with ASHRAE 90.1 Table A.

Internal Loads / Occupancy

	Table 1.	4.4.8.	0 Dishwasher	
Water Connection	Referen Quantit	ce Sy	Energy Demand	Capacity ²⁰
DHW	PH case occupan	e nts	239 kWh/yr	Standard (12)
13	Table	1.4.4	.8.1 Cooking	
Choice	Reference Quantity	Wł	nen Applicable?	Energy Demand ²¹
Electricity	DH case		Coil	0.22 kWh/use
Liectricity	PH case		Induction	0.20 kWh/use
Natural Gas	occupants		-	0.25 kWh/use

Table 1.4.4.8.2 Fridge / Freezer Combo					
Size (cu ft)	Reference Quantity	Energy Demand Reference	Energy Demand		
<10	PH case		230 kWh/yr		
15-20	Units or User	Year	451 kWh/yr		
>20	Defined		699 kWh/yr		

Table 1.4.4.8.3 Freezer					
Reference Quantity	Energy Demand Reference	Energy Demand			
PH Case Units or User Defined	Year	394 kWh/yr			

Table 1.4.4.8.4 Clothes Dryers					
Туре	When Applicable?	Reference Quantity	CEF ²²		
Condensation	Ventless	Reference Quantity PH case occupants	2.68		
Condensation	Heat Pump		5.85		
Policina Ala	Electric	PH case occupants	3.93 ²³		
Exhaust Air	Natural Gas ²⁴		3.48		

	Table 1.4.4.8.5 Clothes Washer						
Reference Quantity	Energy Demand	Utilization Factor	Capacity	MEF ²⁵			
PH case occupants	110 kWh/yr	1	4.5 ft ³	<mark>3.1</mark> 3			

Internal Loads / Occupancy

PHIUS+ MELS	Bedroooms	78	✓
PHIUS+ Interior lighting	PH case floor area		✓
PHIUS+ Exterior lighting	PH case floor area		

• Single family MELs + Lighting setup \rightarrow WUFI Auto-calculates

User defined - Misc electric loads	User defined	1	✓
User defined - lighting	User defined	1	✓
User defined - lighting	User defined	1	

• Multifamily MELs + Lighting setup \rightarrow MF Calculator

Multifamily Calculator

- Used for any project with 2 or more dwelling units!
- Used in the calculation of targets
- **Phius Multi-Family** v24.0.1 Calculator Lighting & Plug Loads for WUFI Passive 75 Number of Units 1 153 Design Occupancy 78 Number of Bedrooms 58,462 MELOWELL (kWh/yr) Interior MELyARD (kWh/yr 4,822 MELCOMM (kWh/yr) 63.284 Total MEL (kWh/yr) LIGHTSINT DWELL (kWh/yr) 22,112 LIGHTSINT, COMM (kWh/yr) 51,133 73.244 Total LIGHTSINT (kWh/yr) 10 LIGHTSEXT, DWELL (kWh/yr) 1,904 LIGHTSEXT.COMM (kWh/yr) 12 LIGHTSGAR (kWh/yr) 1.500 13 3,404 Total LIGHTS_{EXT} (kWh/yr) 14 Exterior MELyARD (kWh/yr) 15 40.352 16 iCFADWELL (Sf) iCFA_{COMM} (sf) 16.196 iCFA_{REF} (sf) 56.548 18

 The iCFA_{REF} should ALWAYS be less than the overall iCFA...why?

Dwelling Unit & Common Areas

ICFADDWELLThe interior conditioned floor area of all the dwelling units. Since either the unit or floor method may be used, it may: - include or exclude the projected floor area of interior partition walls to common spaces, whichever approach is simpler to document. OR - include or exclude the projected floor area of interior partition walls within or between units, whichever approach is simpler to document.ICFACOMMThe interior conditioned floor area of common spaces, not including interior partition walls.ICFACOMMThe sum of the ICFADDWELL and ICFACOMM to use as a reference for the total ICFA of the building. This value will likely be less than the ICFA of the whole building since interior partion walls may or may not be included in this calculation, but should be included in the		
 include or exclude the projected floor area of interior partition walls to common spaces, whichever approach is simpler to document. OR include or exclude the projected floor area of interior partition walls within or between units, whichever approach is simpler to document. iCFA_{COMM} The interior conditioned floor area of common spaces, not including interior partition walls. iCFA_{REF} The sum of the iCFA_{DWELL} and iCFA_{COMM} to use as a reference for the total iCFA of the building. This value will likely be less than the iCFA of the whole building since interior partion walls may or may not be included in this calculation, but should be included in the 		The interior conditioned floor area of all the dwelling units. Since either the unit or floor method may be used, it may:
iCFA _{DWELL} whichever approach is simpler to document. OR - include or exclude the projected floor area of interior partition walls within or between units, whichever approach is simpler to document. iCFA _{COMM} The interior conditioned floor area of common spaces, not including interior partition walls. The sum of the iCFA _{DWELL} and iCFA _{COMM} to use as a reference for the total iCFA of the building. This value will likely be less than the iCFA of the whole building since interior partion walls may or may not be included in this calculation, but should be included in the		- include or exclude the projected floor area of interior partition walls to common spaces,
OR - include or exclude the projected floor area of interior partition walls within or between units, whichever approach is simpler to document. iCFA _{COMM} The interior conditioned floor area of common spaces, not including interior partition walls. iCFA _{REF} The sum of the iCFA _{DWELL} and iCFA _{COMM} to use as a reference for the total iCFA of the building. This value will likely be less than the iCFA of the whole building since interior partition walls may or may not be included in this calculation, but should be included in the use of the building included in the sub-to-building included in the sub-to-building included in the i	iCFA DWELL	whichever approach is simpler to document.
 - include or exclude the projected floor area of interior partition walls within or between units, whichever approach is simpler to document. iCFA_{COMM} The interior conditioned floor area of common spaces, not including interior partition walls. iCFA_{REF} The sum of the iCFA_{DWELL} and iCFA_{COMM} to use as a reference for the total iCFA of the building. This value will likely be less than the iCFA of the whole building since interior partion walls may or may not be included in this calculation, but should be included in the inc		OR
units, whichever approach is simpler to document.iCFAcommThe interior conditioned floor area of common spaces, not including interior partition walls.iCFAcommThe sum of the iCFApwell and iCFAcomm to use as a reference for the total iCFA of the building. This value will likely be less than the iCFA of the whole building since interior partion walls may or may not be included in this calculation, but should be included in the		- include or exclude the projected floor area of interior partition walls within or between
iCFA _{сомм} The interior conditioned floor area of common spaces, not including interior partition walls. The sum of the iCFA _{DWELL} and iCFA _{сомм} to use as a reference for the total iCFA of the building. This value will likely be less than the iCFA of the whole building since interior partion walls may or may not be included in this calculation, but should be included in the		units, whichever approach is simpler to document.
icFA _{сомм} walls. iCFA _{REF} The sum of the iCFA _{DWELL} and iCFA _{сомм} to use as a reference for the total iCFA of the building. This value will likely be less than the iCFA of the whole building since interior partion walls may or may not be included in this calculation, but should be included in the	ICEA	The interior conditioned floor area of common spaces, not including interior partition
iCFA_{REF} The sum of the iCFA_{DWELL} and iCFA_{COMM} to use as a reference for the total iCFA of the building. This value will likely be less than the iCFA of the whole building since interior partion walls may or may not be included in this calculation, but should be included in the	CFACOMM	walls.
iCFA_{REF} building. This value will likely be less than the iCFA of the whole building since interior partion walls may or may not be included in this calculation, but should be included in the		The sum of the iCFA_{DWELL} and iCFA_{COMM} to use as a reference for the total iCFA of the
partion walls may or may not be included in this calculation, but should be included in the	ICEA	building. This value will likely be less than the iCFA of the whole building since interior
	ICFAREF	partion walls may or may not be included in this calculation, but should be included in the
whole building ICFA.		whole building iCFA.

Dwelling Unit & Common Areas

CORRIDOR / STAIR

ELEVATOR

STORAGE / MECHANICAL

OFFICE

MULTIPURPOSE

COMMON BATHROOM

COMMON LAUNDRY

DWELLING UNIT

Mechanical Ventilation - Design airflow Rates

Baseline Case

 Probably most valuable to assume an exhaust-only system that complies with code requirements

Phius-Compliant Case

- Use the multifamily calculator as a guide for minimum dwelling unit ventilation requirements
 - If doing a single family project, use exhaust rooms to determine the minimum required ventilation (this should be familiar from CPHC training!)
- For common areas, assume: 0.06 cfm / sf (iCFA)

Total # of Units	75
Design Occupancy	153
Total # of Bedrooms	78
Total # of Bathrooms	75
Total Supply _{DWELL} (cfm)	3,582
Total Exhaust _{DWELL} (cfm)	3,582
iCFA _{DWELL} (sf)	40,352

Mechanical Ventilation - Exhaust Devices

- Direct exhaust only, ducted straight to the outside
- Run time for range hood & dryers will be auto-calculated by WUFI, but flow rates do need defined
- Exhaust air flow rate defaults:
 - Use 220 cfm for dryers
 - Use 100 cfm for range hoods
 - Use 50 cfm for bath fans
 - 60 min/day = 21900 min/yr

Bathroom direct exhaust:

- 1. Assume 60 min / bathroom / day²⁷
 - Exhaust volume flow rate [cfm]:
 - \rightarrow Sum total bathroom exhaust fans in the building
 - Run time per year [min]:
 - \rightarrow (365 days/yr * 60 min/day) = 21,900 minutes/yr

Name	Туре	Exhaust volume flow rate [cfm]	Run time per year [min]	Run time per day [min]
Dryer	Exhaust dryer	220	n.def.	n.def.
Range hood	Exhaust range hood	100	n.def.	n.def.
Bathroom	Other exhaust appliances	50	21900	n.def.

Phius ©2024

Mechanical Systems

Documentation

- Early mechanical design is usually very schematic
 - Narratives identify the system type, design intent, and operation sequence
 - Schematic plans can provide information on distribution, equipment selection
 - Plant diagrams are most useful
- Identification of system type and match is most critical

About Systems in WUFI Passive

- WUFI is generally more focused on envelope than systems
- Having general ranges of efficiency and how to input in WUFI is most critical
- Remember: The building envelope (+E/HRV) set your passive space loads, and the systems sets the EUI / Source energy

About Efficiencies

- Following slides show the best estimate from Phius reviewing projects
- For baseline cases, if no specification, look at federal register

Incorporate Minimum Efficiency Requirements for Heating and Cooling Products into Federal Acquisition Documents

Boilers

The table below includes minimum efficiency requirements for the following FEMP-designated and ENERGY STAR-qualified covered product categories: **boilers (commercial)** and **boilers (residential)**.

	GAS- AND OIL-FIRED	ED BOILERS: MINIMUM EFFICIENCY REQUIREMENTS				
Equipment Type Sc Cc Boilers, hot water Oi	Subcategory or Rating Condition	Size Category (Input)	Efficiency Metric	Minimum Efficiency		
		<300,000 Btu/h	AFUE ^a	90%		
	Con find	≥300,000 Btu/h and ≤2,500,000 Btu/h	Etb	94%		
	Gas-med	>2,500,000 Btu/h and ≤10,000,000 Btu/h	Ecd	96%		
Poilors bot water		D OL-FIRED BUILERS: MINIMUM EFFICIENCY REQUIREMENTS Rating Size Category (Input) Efficiency Metric Minimum Efficiency Metric <300,000 Btu/h	82%			
bollers, not water		<300,000 Btu/h	AFUE	87%		
		≥300,000 Btu/h and ≤2,500,000 Btu/h	Et	94%		
	Oil-fired	>2,500,000 Btu/h and ≤10,000,000 Btu/h	Ec	89%		
		>10,000,000 Btu/h ^d	Ec	84%		
	Gas-fired	<300,000 Btu/h	AFUE	90%		
		≥300,000 Btu/h and ≤2,500,000 Btu/h	Et	94%		
Equipment Type Subcategory or Rating Boilers, hot water Gas-fired Oil-fired Oil-fired Gas-fired Gas-fired	>2,500,000 Btu/h and ≤10,000,000 Btu/h	Et	83%			

Split Heat Pumps / VRF

- Most common system seen in project reviews
- Input as *Heat Pump*:
 - Heating COP 3
 - Cooling COP 4

or

- Heat Pump Rated Monthly COP:
 - Heating COP
 - 2.4 @ 17°F
 - 3.5 @ 47°F
 - Cooling COP 4

Ground Source WSHP

- More stable ground temps keep COPs consistent
- Input as *Heat Pump:*
 - Heating COP 3
 - Cooling COP 4
- Account for pumps by derating COP by ~5%

Or

- Include an Auxiliary Device
 - Assume ~7 tons/HP
 - Can be placed out of the thermal boundary

Heat Pumps in Series - WSHP

- Large format Electrification
- Input as Heat Pump:
 - Heating COP 2.25
 - Cooling COP 3.25
- Account for pumps by derating COP by ~5%

Or

- Include an Auxiliary Device
 - Assume ~7 tons/HP
 - Can be placed out of the thermal boundary

WSHP w/ Boiler and Cooling Tower

- Cold climates anyone?
- Input as *Heat Pump* with 80% coverage:
 - Heating COP 2.5Cooling COP 3.25
- Input boiler as User Defined if gas or Electric Resistance w/20% coverage.
- Account for pumps and cooling tower by derating COP by ~10%

Or

- Include an Auxiliary Device
 - Assume ~7 tons/HP
 - Can be placed out of the thermal boundary

ASHP w/ Hydronic Fan Coils

- Large format Electrification
- Input as *Heat Pump:*
 - Heating COP 2.5
 Cooling COP 3.5
- Account for pumps by derating COP by ~5% Or
- Include an Auxiliary Device
 - Assume ~7 tons/HP
 - Can be placed out of the thermal boundary
 - May need to include fan energy as well

Combustion plus DX Cooling

- Input as User Defined:
 - Heating efficiency: 90% for furnace, 96% for boiler
- Input cooling as *Heat Pump:*
 - Cooling COP: 3.5

Ventilation

- If baseline system is not balanced:
 - PH Case/Additional Data/ Type of ventilation system: Exhaust.
- Balanced ventilation is a Phius program requirement
 - Input Mechanical Ventilation
 Devices
 - MF Calculator sizes flow rates
 - ERV: Sensible 0.75, Latent: 0.5
 - HRV: Sensible 0.8
 - Fan Power:
 - 1 W/cfm for small units
 - 1.5 W/cfm for DOAS
 - 2+ W/cfm for high rise

Distribution - Domestic Hot Water

Keep it Simple & Conservative!

- Recirculation likely?
- How many stories?
- How many risers?
- How long are the double-loaded corridors?

stories x # risers x 10' (or so)
= Vertical Recirc Pipe lengths

stories x length of the corridor = Horizontal Recirc Pipe lengths

Distribution - Domestic Hot Water

Keep it Simple & Conservative!

- How many dwelling units?
- How many dwelling units types?
- How many bathrooms?

Use the Multifamily Calculator to help you

Trunks: Input one line per dwelling unit type.

Branches: Input one line to connect to the twigs.

Twigs: One line per fixture type: kitchen sink, lavatory faucet, tub/shower.

yan	onic nearing of the Cooling Veni	nauon Support	ive device / auxil	lary energy						
ien	Hot water piping									
Pre	eselection effectiveness	s	Standard flow							
Hot	t water fixture effectiveness [-]	1								
AII	pipes are insulated		✓							
Co	unt of units or floors	L	Jser defined							
To	unk									
Nr.	Name	Demand recirculation	Pipe material	Piping diameter [in]	Piping length [ft]	Heat capacity [Btu/°F]	Count units or floors	Volume [oz]	Cumulative volume [oz]	
1	1 Bedroom A1		Copper L	1/2	0	0	20	0	0	
2	1 Bedroom B1		Copper L	1/2	0	0	32	0	0	¥ 0
3	2 Bedroom C1		Copper L	1/2	0	0	18	0	0	
4	Recirc Estimate	~	Copper L	1	1800	747.2	1	9882	0	
Bra	anch: Trunk 1, 1 Bedroom A1									
Nr.	Label	Pipe material	Piping diameter [in]	Piping length [ft]	Heat capacity [Btu/°F]	Volume [oz]	Upstream volume [oz]	Branch cumu- lative volume [oz]	Cumulative volume [oz]	
1	Generic Branch	Copper L	1/2	20	2.53	31	0	31	31	
										% C
Tw	rig: Branch 1, Generic Branch									
Nr.	Fixture label	Pipe material	Piping diameter [in]	Piping length [ft]	Heat capacity [Btu/°F]	Volume [oz]	Upstream volume [oz]	Cumulative volume [oz]	Watersense met?	Tin
1	Kitchen Sink	Copper L	1/2	10	1.27	15.5	31	46.5	True	44
2	Bathroom Sink	Copper L	1/2	5	0.63	7.75	31	38.75	True	36

DHW Plant

- Distribution and and demands set the loads, plant equipment sets the EUI
- In larger buildings, electrification has been difficult
- Can be centralized, semi centralized, or decentralized
- Include recirculation pumps
 in the Aux Energy

Gas Water Heater

- Boiler + storage tank or unitary
- Set as User Defined device
 - Efficiency: 90-95%
- Include Water Storage
 - Specific total losses: 8 Btu/hr °F

Electric Water Heater

- Boiler + storage tank or unitary
- Set as *Electric Resistance* device
- Include Water Storage
 - Specific total losses: 8 Btu/hr °F

Heat Pump Water Heater

- Unitary only
- Set as HPWH Inside device
 - COP / Performance Ratio
 - Match Heating COP
 - EF: 2.35
- **Do not** include *Water Storage*

Split Heat Pump Water Heater

- CO₂ or Split
- Set as Heat Pump
 - COP: 3 for CO₂, 2 for R-410A / 32, etc
- Include Water Storage
 - Specific total losses: 8 Btu/hr °F
- If swing tank is present, assume 20% coverage by *Electric Resistence*

